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Abstract 

Volcanic lakes often capture a significant amount of volcanic heat emission and thus provide a unique opportunity 
to monitor changes inside the volcano. We present a Bayesian inversion method to automatically infer changes in 
volcanic heat emission over time at the base of a volcanic lake from lake monitoring data using a non-linear Kalman 
Smoother. Our method accounts for the, sometimes large, uncertainties in observations and the underlying physics-
based model to generate probabilistic estimates of heat emission. We verify our results using a synthetic test case and 
then estimate the daily heat input rate into Mt. Ruapehu’s Crater Lake, New Zealand, between 2016 and 2022. Time-
frequency analysis of the heat input rate shows dominant periods of heating cycles ranged between 100 - 250 days. 
The period between 2017 and 2020 was dominated by shorter cycles and greater-than-average heat input rate which 
points to changes in the magmatic heat supply and the hydrothermal system during this time.
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Introduction
The amount and rate of heat emitted by a volcano over 
time provides important clues about volcanic processes 
at depth. For example, a sudden rise in the heat output 
rate combined with increased microgravity signals may 
result from the emplacement of fresh magma at shallow 
depth (Brown et  al. 1991). A slow decrease in the heat 
emission rate together with a high carbon-sulfur ratio of 
the emitted gas may point to the formation of a hydro-
thermal seal (Christenson et al. 2010).

Volcanic lakes help with estimating heat emissions. 
Often, the majority of a volcano’s heat and gas output 
passes through the crater lake. Crater lakes act thus like a 
filter, integrating heat and gas input from the vents enter-
ing the lake.

Monitoring changes in temperature, water mass, and 
ion concentration in these lakes can, therefore, serve 
as proxies for changes in gas- and steam-release by the 
hydrothermal system and, ultimately, the melt zone 
beneath the volcano.

Ruapehu Crater Lake (Te Wai ā-moe in Te Reo Maori 
and referred to as RCL from hereon) on Mt. Ruapehu, 
an active andesitic stratovolcano in the center of New 
Zealand’s North Island (Fig. 1), is one such example with 
records of observations dating back to the 19th century 
(Friedlander 1898). Mt. Ruapehu showed eruptive activ-
ity on at least 603 days since 1830 with many phreatic 
and phreato-magmatic eruptions and two major mag-
matic episodes (Scott , 2013; Historic Eruptive Activity 
Mt. Ruapehu , 2022). Although the latest magmatic event 
between June 1995 to November 1997 and a subsequent 
dam collapse changed the shape and volume of the lake, 
it has been largely unchanged since then and the lake’s 
bathymetry is well known from times when it was empty.
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First attempts to quantify the amount of heat entering 
the lake date back to 1966 (Dibble, 1966). Since 2016 
water temperature and lake level have been monitored 
continuously and water samples for ion concentration 
measurements have been taken on an approximately 
monthly basis. This enables us to continuously estimate 
heat input into the lake and, in principle, automatically 
detect changes as soon as they occur.

We typically infer the heat input from a mass and 
energy balance calculation: the total mass and energy 
flow into and out of the lake has to account for the 
observed changes in lake temperature, water level and 
ion concentration (Hurst and Dibble 1981; Hurst et al. 
1991; Stevenson 1992; Fournier et al. 2009; Scott 1994). 
At RCL, and probably at most other volcanic lakes, this 
is an underdetermined problem, that is the number of 
unknown parameters in the mass and energy balance 
model exceeds the number of independent observa-
tions. Hence, it is necessary to constrain some model 
parameters using prior knowledge. Further, some 
observations and input parameters come with large 
uncertainties and are sampled irregularly. The mass and 
energy balance model itself also comes with consider-
able uncertainty as it is only a rough approximation of 
the physical processes within the crater lake.

One way to handle these difficulties is to make edu-
cated guesses about unconstrained parameters, inter-
polate between irregularly sampled data, and ignore 
uncertainties. We will call this the deterministic 
method. While it can lead to reasonable results, they 
have the following problems: 

1 It is not possible to quantify our confidence in the 
accuracy of the results.

2 Comparing results to other models becomes very dif-
ficult.

To illustrate the second point let us imagine that we 
make an estimate of intruded magma volume based on 
measured gas flux. Estimating the heat flux based on 
this magma volume using, for example, the methods 
described in Stevenson (1992), will most likely not match 
the heat flux estimated with the deterministic method. 
The reason for that is that gas flux, the assumptions on 
amount of exsolved gas from a magma body, and the 
mass and energy balance model all carry large uncertain-
ties. Instead of trying to find a single estimate of magma 
volume that fits all observations perfectly we better try to 
find a range of magma volumes that are compatible with 
our models and observations within their uncertainties. 

Fig. 1 Image of Mt. Ruapehu’s crater lake from 2008 (©Visual Media Library, GNS Science, ID 6277, photographer Karen Britten). The red circle marks 
the location of the lake outlet. The location of Mt. Ruapehu is shown as a red triangle on the inset map
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The result would be a probabilistic model that can pro-
vide lower and upper bounds on magma volume.

In the following, we propose a probabilistic (Bayesian) 
inference approach of the time-varying heat input rate 
which naturally handles these difficulties and transpar-
ently propagates uncertainties of observations and prior 
assumptions into posterior uncertainties.

Probabilistic inference method
Physical model
The mass and energy balance model can be written in 
terms of three coupled ordinary differential equations 
(Hurst et al. 1991; Stevenson 1992). The rate of lake water 
mass change ( Ṁ ) is the difference between the rate of 
steam input through the vent system beneath the lake 
( Ṁi ), the water inflow rate through melt and precipita-
tion ( Ṁs ), the outflow rate through overflow ( Ṁo ), and 
the rate of mass loss through evaporation ( Ṁe):

The energy content of the lake can be described with the 
notion of enthalpy, H, which is defined relative to a ref-
erence enthalpy. In the following we take the enthalpy 
of the lake at temperature T = 0 ◦C = T0 as reference 
H0 = H(T0) . At constant pressure, the enthalpy of the 
lake can then be written as a function of T, T0 , M and the 
specific heat of water, cw:

For all following equations we take cw = constant , such 
that the enthalpy of lake water at temperature T can be 
written as H(T ) = H0 + cwMT .

The rate of enthalpy change of the lake water can then 
be defined as a function of the rate of energy input from 
volcanic sources ( Q̇i ), the rate of energy gain due to solar 
irradiation from short-wavelength radiation ( Q̇r ), the rate 
of energy loss through outflow/seepage ( cwTṀo ), the 
rate of surface energy losses due to evaporation (forced 
and free convection), sensible heat, and long-wavelength 
radiation ( Q̇e ), and the rate of energy loss from heating 
incoming surface water ( cwTṀs):

Because RCL is at an altitude of ∼ 2500 m and big parts 
of its catchment are covered by snow and ice all year 
round we assume the temperature of incoming surface 
water to be at 0 ◦C . Several empirical and theoretical 
equations exist to describe the surface losses and we refer 

(1)
dM

dt
= Ṁi + Ṁs − Ṁo − Ṁe

(2)H(T ) = H0 +
T

T0

cwMτdτ

(3)dH

dt
=

d(cwMT )

dt
= cwTṀ + cwMṪ = Q̇i + Q̇r − cwTṀo − Q̇e − cwTṀs

the reader to previous publications for more detailed dis-
cussions (Stevenson 1992; Hurst et al. 2015). There is no 
consensus on the best quantitative model of evaporation 
from warm lakes and, in fact, the most suitable equation 
may depend on the location of and available observations 
from the lake. Appendix A describes the equations used 
in this study in detail which include the recent develop-
ment on forced (i.e. wind-induced) convection (Sartori 
2000). It is important to note here that Qe is a function of 
T and the wind speed above the lake.

Following from Eq.  3 the temperature change dT
dt

 can 
then be written as:

Finally, the change in ion concentration expressed in total 
ion amount (X) of, for example, Mg2+ can be defined as:

This equation is only true under the assumption that X 
only changes due to dilution by the inflow of meltwater 
and steam and there is no re-supply between eruptive 
episodes. Equation 5 gives an estimate of the average out-
flow over periods on the order of months but does not 
capture shorter term variations in the outflow. In the 
following we will also only account for water outflow 
at the outlet and ignore seepage through the lake floor. 
This approximation is supported by the observation that 
amongst the various rivers at Mt Ruapehu only the one 
fed directly by RCL’s outlet bears RCL’s chemical signa-
ture (B. Scott, 2022, GNS Science, pers. commun.).

The main challenge in solving the mass and energy bal-
ance equations for Q̇i arises from the non-linear relation-
ship between Qe and T as shown in Fig. 2.

Inference
The objective of the inference, or inverse, problem is 
to estimate the rate at which heat is entering the lake 
through the hydrothermal system below ( Q̇i ) from the 
given observations and the mass and energy balance 
model described in Section 2.1. Let y1:t be the time series 
of t observations of T, M, X, and Ṁo and xk be the n 

model parameters described in Section  2.1 at time step 
k. Note that xk also includes T, M, X and Ṁo . We dis-
tinguish here between the state of the lake and observa-
tions of this state (T, M, X, Ṁo ) which are to some degree 
uncertain. Solving the inverse problem probabilistically 

(4)
dT

dt
=

1

cwM

(

Q̇i + Q̇r − cwTṀo − Q̇e − cwTṀs

)

−
T

M
Ṁ

(5)
dX

dt
= −Ṁo

X

M
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means that we are looking for a probability distribu-
tion that can best explain our observations taking into 
account the mass and energy balance model and all rel-
evant uncertainties. More concisely we are looking for:

which means that the variable xk has the probability dis-
tribution p(xk |y1:t) . The latter is the conditional prob-
ability of xk given all observations until time t.

Solving Eq.  6 using standard strategies like Markov 
Chain Monte Carlo is computationally very expensive 
as the number of variables grows exponentially with the 
length of the time series and the number of model param-
eters. Alternatives are Bayesian Filtering and Smoothing 
algorithms of which the Kalman Filter and Smoother are 
the closed form solution for linear models (Kalman 1960; 
Rauch et  al. 1965; Särkkä 2013). Note that to infer x at 
time step k we use all available observations, that is t ≤ k 
and t > k . This is called a Bayesian or Kalman Smoother. 
For the Kalman Filter only t ≤ k are used.

We assume that the states of the lake form a Markov 
chain, meaning that the state of the lake at time step k, xk , 
only depends on the state at adjacent time steps:

and

With this assumption and using Bayes’ rule, Eq. 6 can be 
rewritten (Särkkä 2013) as:

(6)xk ∼ p(xk |y1:t)

(7)p(xk |x1:k−1, y1:k−1) = p(xk |xk−1)

(8)p(xk−1|xk:t , yk:t) = p(xk−1|xk)

with

where we made use of the Chapman-Kolmogorov 
equation:

Equations  9 to 13 describe a recursive way to compute 
Eq.  6 in which we only need to know x0 , p(xk |xk−1) , 
and p(yk |xk) . Equation  9 and 11 are also known as the 
Bayesian Smoothing and Bayesian Filtering equation, 
respectively (see Appendix B for more details on the deri-
vation). If p(xk |xk−1) and p(yk |xk) are linear transforma-
tions with normally distributed errors, the Kalman filter 
(Kalman 1960) and Kalman smoother (Rauch et al. 1965) 

(9)p(xk |y1∶t ) = p(xk |y1∶k )∫
[

p(xk+1|xk )p(xk+1|y1∶t )

p(xk+1|y1∶k )

]

dxk+1

(10)p(xk+1|y1:k) =

∫

p(xk+1|xk)p(xk |y1:k)dxk

(11)p(xk |y1:k) =
1

zk
p(yk |xk)p(xk |y1:k−1)

(12)zk =

∫

p(yk |xk)p(xk |y1:k−1)dxk

(13)

p(xk |y1:k−1) =

∫

p(xk |xk−1)p(xk−1|y1:k−1)dxk−1

p(x3|x1) =

∫

p(x3|x2)p(x2|x1)dx2

Fig. 2 Surface energy loss ( Qe ) with respect to lake water temperature (T). The model parameters that have been held fixed are shown in the title
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represent closed form solutions. In our case, these trans-
formations are:

where f (xk−1) is the non-linear physical model described 
in Section 2.1 propagated forward in time using a fourth-
order Runge-Kutta scheme. If we assume the errors, 
rk and qk , to be normally distributed ( qk ∼ N (0,Qk) , 
rk ∼ N (0,Rk) ), we can compute an approximate solu-
tion to Eq. 9 using the Unscented Kalman Smoother (Van 
der Merwe , 2004; Särkkä , 2013), a non-linear Kalman 
Smoother.

We estimate Rk from the daily variations in the obser-
vations, but we do not know x0 and Qk . Setting x0 to an 
arbitrary value within physically reasonable bounds, but 
large uncertainty works well in practice and has very lit-
tle influence on the results. While Qk can be formally 
optimized we treat it here as a design parameter that we 
modify such that the observations are matched within 
their error bounds and the inferred heat input rate var-
ies smoothly. The latter is motivated by the fact that the 
physical model described in Section  2.1 is not able to 
model short-term transient changes in lake volume, tem-
perature, and ion concentration. These can be caused by 
rain or increased meltwater influx, partial collapse of the 
lake walls, or the influx of ion-enriched fluids. The under-
lying assumption of a perfectly mixed lake typically does 
not apply in these situations.

The ability to account for these epistemic uncertainties 
explicitly is a particular strength of the Bayesian Filtering 
and Smoothing equations. It allows us to gain valuable 
insights even from very simple models.

Results
Synthetic test
To evaluate the inference scheme we design a synthetic 
test, consisting of a very large cylinder, the same volume 
as RCL. We keep the wind speed and surface water inflow 
constant at 4.5 m/s and 10 kt/day, respectively. To model 
the outflow we assume the outlet to be a pipe 0.2 m2 in 
cross-section and then use Bernoulli’s equation to model 
the water outflow based on the water level in the cylinder 
above the pipe. We assume that the incoming heat ( Q̇i ) 
follows a combination of a third-order polynomial and a 
sinusoidal function and that the enthalpy of the incoming 
steam is 2.8 MJ/kg which corresponds to the enthalpy of 
saturated steam at hydrostatic pressures similar to those 
at the bottom of the lake (Mayhew and Rogers 1978). To 
the resulting synthetic observations we add uncertain-
ties similar to those estimated from real observations 

(14)p(xk |xk−1) =f (xk−1)+ qk−1

(15)p(yk |xk) =xk [1 : m] + rk

(see Section 3.2). As with real data, average and standard 
deviation of all values within a day are calculated. The 
standard deviation is taken as a proxy for the uncertainty 
in observations ( Rk ). To simulate the disparity between 
sampling intervals of different data streams we randomly 
remove most of the observations of total ion amount (X), 
water outflow rate ( Ṁo ), and water inflow rate ( Ṁs ). This 
dataset is then inverted using the Unscented Kalman 
Smoother to recover the original heat input rate.

Figure  3 shows the result of the probabilistic infer-
ence of heat input compared to the true input of the 
synthetic model. The observations fit well within their 
error bounds, but we see some discrepancies between 
the original and the recovered heat input rates, especially 
for very steep changes in the input rate. This is the result 
of preferring a smooth solution as already mentioned in 
Section 2.2.

It is noteworthy that the mass outflux rates are recov-
ered quite accurately despite providing very few synthetic 
observations.

Real data
Temperature at RCL is measured by an integrated-circuit 
temperature device (Texas Instruments LM35) located 
roughly 1.9 m below the lake’s current overflow level. 
The water level sensor is a hydrostatic pressure sensor 
(First Sensor KTE/KTU/KTW6000...CS Series) and it 
is co-located with the temperature sensor. Both sensors 
have a sampling interval of 15 minutes and transmit data 
several times a day via satellite to GNS Science, which 
monitors New Zealand’s geohazards through its GeoNet 
program (GeoNet Home 2022). Due to the type of sat-
ellite connection only about 30% of the temperature and 
level measurements arrive at GeoNet’s datacenter; the 
rest of the data is lost. Water samples are taken manu-
ally 8-12 times a year from which subsequently, amongst 
many other analyses, concentrations of Mg++ and Cl− 
are determined at GNS Science’s Geothermal Analytical 
Laboratory. We will focus here on Mg++ concentration 
as it shows less deviation from the assumption of con-
stant dilution than Cl− . Because of the sparse sampling, 
new information on Mg++ concentration is available 
approximately once per month.

To estimate uncertainties of temperature and water 
level observations, we compute their daily averages and 
standard deviations. Uncertainties of Mg++ concentra-
tions are estimated directly when two samples were taken 
on the same day. Otherwise, their uncertainty is taken to 
be the median of directly estimated uncertainties from 
when multiple samples were taken.

Lake outflow ( Ṁo ) is measured once or twice per year, 
and we further know from field observations that the 
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lake is not overflowing beneath a certain water level. We 
fit a sigmoid function to these observations assuming a 
maximum outflow rate of 250 l/s. We assume the uncer-
tainty in Ṁo as the 95 percent confidence interval of the 
curve-fitting.

As there is no permanent weather station close to RCL 
we assume the wind speed to be 5 m/s. This was the aver-
age wind speed derived from a temporary deployment of 
a weather buoy on RCL and adjacent permanent weather 
stations (Hurst et al. 2012).

Figure  4a shows the heat input rate ( Q̇i ) for RCL for 
lake measurements between 4 March 2016 and 1 Febru-
ary 2022. During this time Q̇i reached a maximum of 753 
MW and was on average 165 MW. The average standard 
deviation was 34 MW and generally increased for lower 
values of Q̇i . To put this in context, currently installed 
geothermal power plants in New Zealand have a com-
bined output of ∼ 1000MW.

To also investigate changes in periodicity we computed 
the continuous wavelet transform of Q̇i using a complex 
Morlet wavelet (Fig. 4b). We chose the wavelet transform 

over the more common windowed Fourier transform for 
its ability to detect non-stationary signals (Torrence and 
Compo 1998). Figure  4c shows the global wavelet spec-
trum which is an average of the wavelet analysis in Fig. 4b 
over the whole analysis period. The global wavelet spec-
trum can be interpreted similarly to the Power Spectral 
Density. Figure  4c shows that periodicity is dominated 
by periods between 100 and 250 days. Which period is 
dominant at any one time changes significantly, and we 
will expand on this further in the following section.

Discussion and conclusion
Inferring the heat input rate ( Q̇i ) into a crater lake is an 
important part of estimating the total energy budget of 
a volcanic system (Brown et al. 1989). Similar to a volca-
no’s gas budget, changes in the heat input rate can either 
indicate changes in the magmatic heat source or in the 
hydrothermal system.

Experiments on analog models of hydrothermal sys-
tems suggest that changes in the heat source and the 
hydrothermal system should also change the length of 

Fig. 3 Inversion result for the synthetic test described in Section 3.1. Turquoise lines and markers represent synthetic observations; red dashed 
lines are the inversion results and black dashed lines are the true input to the synthetic test. Error bars and shaded areas represent ± 3 standard 
deviations
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heating cycles (Vandemeulebrouck et  al. 2005; Fitzger-
ald and Woods 1997). Figure 4b shows the heating cycles 
before mid-2017 and after mid-2019 were dominated by 
longer periods. From mid-2017 to mid-2019 cycles were 
mostly of shorter periods which may indicate a change in 
the volcanic system during this time.

This is further supported by the cumulative difference 
to the mean for the heat input rate as shown in Fig. 5. This 
type of graph helps to highlight periods when the heat 
input rate was above or below the long-term mean. Before 
2017 and after 2019 the difference appears to fluctuate 
more or less around the mean value. After a dip beginning 

in 2017 a period of higher than mean values starts towards 
the end of 2017 and ends early 2020.

To further explore hypotheses like this, the next logical 
step is to include numerical models of magmatic gas and 
heat release as well as hydrothermal heat and fluid flow. 
Our inversion method is well suited for such more complex 
models as its runtime scales linearly with the number of 
parameters. Several studies have demonstrated the value of 
non-linear Kalman Filters for inverse problems with non-
linear, high-dimensional numerical models (e.g. White 
2018; Huang et al. 2022).

Fig. 4 a) Inference results for the heat input rate Q̇i at RCL between 4 March 2016 and 1 February 2022. The solid line shows the marginal 
probability and the uncertainty is displayed as shaded region; b) Continuous wavelet transform of the time series shown in a; c) Power spectral 
density of the heat input rate shown as a solid line with uncertainty displayed as shaded region

Fig. 5 Cumulative difference to the mean for the heat input rate into RCL (solid line) and its uncertainty (shaded region) calculated from the 
time-series in Fig. 4a
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Previous studies of RCL’s mass and energy balance found 
that they required very high values of enthalpy for the 
incoming steam to avoid violating physical boundary con-
ditions such as negative values for the inflow rate of mete-
oric water ( Ṁs ) (Hurst et al. 1991, 2015). Their explanation 
was that as rising hot fluids enter the lake, relatively cool 
lake water flows back into the vent. This would lead to an 
overall lower addition of mass to the lake and resulting in 
an enthalpy value that is double the expected for saturated 
steam at hydrostatic pressures likely to be found at the bot-
tom of the lake. By including uncertainties in our observa-
tions, this explanation is still a possibility but no longer a 
requirement to satisfy the physical constraints. Numerical 
modelling of hydrothermal processes may also shed further 
light on the heating processes and whether the lake and the 
vent form a single or two separate convective systems.

In conclusion, the combination of the mass and energy 
model, developed in previous studies (Hurst et  al. 1991, 
2015), with the probabilistic inference method we devel-
oped here provides a powerful method to continuously 
infer the heat input rate into RCL. It allows us to combine 
disparate data streams, invert them for probabilistic esti-
mates of the heat input rate and thereby keep a finger on 
Mt. Ruapehu’s energy budget.

Appendix A: Surface losses
A.1 Long‑wavelength radiation
The net loss through long-wavelength radiation can be writ-
ten as:

where 

A  is the surface of the lake (in m2)
σ  is the Stefan-Boltzmann coefficient ( 5.67e−8 W

m2K 4)
ǫw  is the lake emissivity
Ts  is the water surface temperature (here assumed to 

be 1 ◦C less than the measured temperature)
ǫa  is the effective atmospheric emissivity
Ta  is the effective air temperature (here assumed to be 

0.9 ◦C)

A.2 Evaporation
As proposed by Hurst et al. (2015) we use the equation of 
Adams et al. (1990) but replace the term for forced convec-
tion by that of Sartori (2000):

(16)Qrad = Aσ(ǫwT
4
s − ǫaT

4
a )

(17)Qevap = [(2.2(Tsv − Tav)
1/3(es − ea))

2 + (L(0.00407u0.8X−0.2
0 )(es − ea)/Pa)

2]1/2

where 

Tsv , Tav  are the virtual surface and air temperatures 
respectively. This correction accounts for the 
extra buoyancy of water vapor compared to air 
(see Eq. 18 for details)

es , ea  are the saturation vapor pressure and the 
ambient air vapor pressure respectively

L  is the latent heat of evaporation
u  is the wind speed
X0  is the fetch, or characteristic length, of the lake
Pa  is the atmospheric pressure

 

A.3 Sensible heat
This describes the heat loss due to conduction and con-
vection above a hot lake and according to Stevenson 
(1992) the ratio between sensible heat, Qsh , and heat loss 
due to evaporation, Qevap can be written as:

where 

ρ  is the air density
ca  is the specific heat of air

We decided to ignore term A as it tends to be very close 
to 1.

A.4 Putting it all together
The final equation to compute surface heat losses is then:

and the mass-loss due to evaporation is:

(18)Txv =
Tx

(1− 0.378ex/Pa)
for x = s or a

(19)

Qsh

Qevap
= Rsh =

ρca

L

(Ts − Ta)

(es − ea)

[
(Ts − Ta)

(Tsv − Tav)

]1/3

︸ ︷︷ ︸

A

(20)Qe = Qrad + Qevap(1+ Rsh)

(21)Me = Qevap/L
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Appendix B: Derivation of the Bayesian Filtering 
and Smoothing equations
In the following we will reiterate the derivation of the 
Bayesian Filtering and Smoothing equations presented 
by Särkkä (2013).

B.1 Bayesian Filtering
For the Bayesian Filtering equation we only consider 
observations up to time step k.

where:

and, using the Chapman-Kolmogorov equation:

Where we made use of Bayes’ rule for Eq.  22 and the 
Markov property (Eq. 7) for Eq. 23.

This is a recursive scheme where p(xk |y1:k) depends 
on the previous step’s solution p(xk−1|y1:k−1) . To start 
the recursion we have to guess p(x0).

B.2 Bayesian Smoothing
Bayesian Smoothing takes into account all observations 
until time step t. This is sometimes referred to in the 
literature as history matching.

Because the states xk form a Markov chain, they are 
independent of future measurements given xk+1:

Combining the Markov property with Bayes’ rule we can 
express the probability distribution of xk given xk+1 and 
y1:t as follows:

The joint distribution of  xk  and  xk+1  given  y
1:t can be 

expressed as:

(22)p(xk |y1:k) =
1

zk
p(yk |xk , y1:k−1)p(xk |y1:k−1)

(23)=
1

zk
p(yk |xk)p(xk |y1:k−1)

zk =

∫

p(yk |xk)p(xk |y1:k−1
)dxk

p(xk |y1:k−1
) =

∫

p(xk |xk−1)p(xk−1|y1:k−1
)dxk−1

p(xk |xk+1, y1:t) = p(xk |xk+1, y1:k)

p(xk |xk+1, y1:t) =p(xk |xk+1, y1:k)

=
p(xk , xk+1|y1:k)

p(xk+1|y1:k)

=
p(xk+1|xk , y1:k)p(xk |y1:k)

p(xk+1|y1:k)

=
p(xk+1|xk)p(xk |y1:k)

p(xk+1|y1:k)

Combining the joint and the conditional distributions 
and using again the Chapman-Kolmogorov equation we 
get the Smoothing Equation (Eq. 9) that solves Eq. 6:

Note that Eq.  9 is again computed recursively where 
p(xk |y1:t) is the solution to the previous smoothing step. 
The recursion starts with the final step of the Bayesian 
Filtering recursion.
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