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Abstract 

A probabilistic volcanic hazard assessment (PVHA) for Ceboruco volcano (Mexico) is reported using PyBetVH, an  
e‑tool based on the Bayesian Event Tree (BET) methodology. Like many volcanoes, Ceboruco is under‑monitored. 
Despite several eruptions in the late Holocene and efforts by several university and government groups to create and 
sustain a monitoring network, this active volcano is monitored intermittently rather than continuously by dedicated 
groups. With no consistent monitoring data available, we look at the geology and the eruptive history to inform prior 
models used in the PVHA. We estimate the probability of a magmatic eruption within the next time window (1 year) 
of ~ 0.002. We show how the BET creates higher probabilities in the absence of monitoring data, which if available 
would better inform the prior distribution. That is, there is a cost in terms of higher probabilities and higher uncertain‑
ties for having not yet developed a sustained volcano monitoring network. Next, three scenarios are developed for 
magmatic eruptions: i) small magnitude (effusive/explosive), ii) medium magnitude (Vulcanian/sub‑Plinian) and iii) 
large magnitude (Plinian). These scenarios are inferred from the Holocene history of the volcano, with their related 
hazardous phenomena: ballistics, tephra fallout, pyroclastic density currents, lahars and lava flows. We present abso‑
lute probability maps (unconditional in terms of eruption size and vent location) for a magmatic eruption at Ceboruco 
volcano. With PyBetVH we estimate and visualize the uncertainties associated with each probability map. Our intent 
is that probability maps and uncertainties will be useful to local authorities who need to understand the hazard when 
considering the development of long‑term urban and land‑use planning and short‑term crisis management strate‑
gies, and to the scientific community in their efforts to sustain monitoring of this active volcano.
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Introduction
Recent volcanic eruptions have resulted in a significant 
number of fatalities, evacuations and economic losses, 
for example at La Palma, Spain in 2021 (Global Volcan-
ism Program 2021), La Soufrière, St. Vincent and the 

Grenadines in 2021 (Global Volcanism Program 2021), 
White Island, New Zealand in 2019 (Park et  al. 2020; 
Cao et al. 2020); Fuego, Guatemala in 2018 (Albino et al. 
2020; Naismith et al. 2019); Hawaii, U.S.A. in 2018 (Feng 
et  al. 2020; Neal et  al. 2019); Anak Krakatoa, Indone-
sia in 2018 (Heidarzadeh et  al. 2020; Grilli et  al. 2019); 
Sinabung, Indonesia in 2013–2018 (Andreastuti et  al. 
2019; Gunawan et  al. 2019); Ontake, Japan in 2014 
(Maeno et  al. 2016) and Eyjafjallajökull, Iceland in 2010 
(Langmann et al. 2012). It is estimated that > 500 million 
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people live in areas with volcanic risk (e.g., Martí 2017; 
Auker et  al. 2013) and large volcanic eruptions affect 
our interconnected world in numerous ways. Volcanic 
eruptions create multiple hazardous phenomena (e.g., 
ballistics, pyroclastic density currents, tephra fallout) 
with impacts at different scales (e.g., local, regional, and 
global), placing a premium on hazard assessments at var-
ious map scales (e.g., Chester et al. 2002).

A useful volcanic risk assessment, from local to global 
scales, relies on probabilistic volcanic hazard assess-
ment (PVHA). Any volcanic hazard assessment employs 
diverse techniques to generate different types of volcanic 
hazard maps. These maps commonly depict the areas that 
can be affected by one or more hazardous volcanic phe-
nomena and are based upon the distribution of depos-
its from past eruptions, modern topography, and/or the 
results of computer modeling of a volcanic phenomenon 
(Ang et al. 2020; Martí 2017; Loughlin et al. 2015; Calder 
et  al. 2015). From a practical standpoint, a determinis-
tic hazard analysis is often scenario-based and assumes 
that an eruption of some type and magnitude will occur 
within some specific period of time (e.g., Tierz 2020; 
Calder et  al. 2015; Connor et  al. 2015). A probabilistic 
analysis considers the probability of eruptions occurring 
within some time interval and their likely characteris-
tics, including range of eruption styles, eruption sizes, and 
eruption source parameters (e.g., Bertin et al. 2022; Poland 
and Anderson 2020; Tierz et al. 2016; Connor et al. 2015). 
PVHA can merge information derived from the record of 
past activity, theoretical models and numerical modeling 
of volcanic phenomena. The advantage of this approach 
is the ability to provide a quantitative way of understand-
ing the hazard posed by a volcanic phenomenon and to 
account for the uncertainties stemming from the natu-
ral variability of the phenomena (aleatoric uncertainty) 
or our limited knowledge about the physical processes 
(epistemic uncertainty) (Tierz et al. 2020; Ang et al. 2020; 
Martí 2017; Tierz et al. 2016; Loughlin et al. 2015; Con-
nor et  al. 2015; Calder et  al. 2015; Marzocchi and Beb-
bington 2012). The resulting probability maps are a type 
of volcanic hazard map that show the probability that a 
given location will be affected by a volcanic phenomenon. 
Importantly, these maps include the associated uncer-
tainties, therefore differing substantially from the deter-
ministic-approach maps. Probabilistic maps represent 
either a conditional probability (i.e., probability that a 
location of interest will be affected by a volcanic phenom-
enon given that an eruption occurs, perhaps sampling a 
range of eruption styles or sizes) or the absolute probabil-
ity (unconditional in terms of eruption probability, size, 
style and vent location) (e.g., Poland and Anderson 2020; 
Rouwet et al. 2019; Tierz et al. 2016; Calder et al. 2015; 
Connor et  al. 2015; Tonini et  al. 2015; Marzocchi et  al. 

2010). A PVHA is therefore often prefered to a determin-
istic analysis, although deterministic scenarios are defi-
nitely useful in some circumstances, such as illustrating 
potential eruption outcomes.

PVHA e-tools have been developed to estimate and 
visualize the probabilities that an area will be affected by 
a volcanic event and the associated uncertainties (e.g., 
Bertin et  al. 2019; Bartolini et  al. 2019; Sobradelo et  al. 
2013; Marzocchi et al. 2010). PVHA serves to bridge the 
volcanological and societal aspects of a volcanic crisis 
and ideally can assist authorities in real-time decision-
making (e.g., Bartolini et al. 2019; Papale 2017; Newhall 
and Pallister 2015; Marzocchi and Bebbington 2012). 
These tools are mostly based on Event Trees (ET) or 
Bayesian Belief Networks (BBN) structures. An ET is a 
directed graph (nodes and branches) (Fig. 1) of progres-
sive events, from an initial state, through subsequent 
stages, to final outcomes (Connor et  al. 2001; Newhall 
and Hoblitt 2002). The final outcomes are often referred 
to as contingencies, and the idea of the ET is to cap-
ture all possible contingencies, unless otherwise stated. 
This unidirectional structure allows probabilities for 
sequences of events in volcanic activity to be calculated 
in a Bayesian framework. By updating the ET with differ-
ent sources of data, including eruptive history (past data) 
and theoretical or mathematical models (prior models), 
it becomes a Bayesian Event Tree (BET), and the prob-
ability of specific outcomes is estimated in a Bayesian 
way (e.g., Marzocchi et al. 2008). Similar to BETs, Bayes-
ian Belief Networks (BBN) are graphical structures rep-
resenting different events related to volcanic activity. 
Unlike BETs, BBNs describe the complexity of this activ-
ity as variable nodes interlinked by branches represent-
ing the causality between them (Christophersen et  al. 
2018; Tierz et  al. 2017; Hincks et  al. 2014; Aspinall and 
Woo 2014; Aspinall et al. 2003). The estimation of prob-
abilities at each node in the BET or BBN schemes is done 
by implementing a computer algorithm based on Bayes’ 
rule, which allows update of the output as new informa-
tion becomes available (Christophersen et al. 2018; Mar-
zocchi et  al. 2008; Aspinall et  al. 2003). Both ETs and 
BBNs have been used to forecast or hindcast eruptions 
for several volcanoes: Aluto, Ethiopia (Tierz et al. 2020); 
White Island, New Zealand (Christophersen et al. 2018); 
La Soufrière, Guadeloupe (Hincks et  al. 2014); Galeras, 
Colombia (Aspinall et al. 2003); Santorini, Greece (Aspi-
nall and Woo 2014); Etna and Somma-Vesuvius, Italy 
(Tierz et al. 2017; Cannavò et al. 2017); St. Helens, U.S.A 
(Newhall 1982); Soufrière Hills, Montserrat (Aspinall and 
Cooke 1998), Pinatubo, Philippines (Punongbayan et  al. 
1996) and others.

Two of the most commonly used e-tools in long-
term PVHA are HASSET (Hazard Assessment Event 



Page 3 of 20Constantinescu et al. Journal of Applied Volcanology           (2022) 11:11  

Tree) (Sobradelo et  al. 2013) and BET_VH (Bayes-
ian Event Tree for Volcanic Hazard) (Marzocchi et  al. 
2010). Both are software implementations of the vol-
cano eruption ET structure (Marzocchi et  al. 2004; 
Newhall and Hoblitt 2002). HASSET and BET_VH have 
been applied for hazard evaluation at different volca-
noes such as San Miguel, El Salvador (Jiménez et  al. 
2018), Okataina, New Zealand (Thompson et al. 2015), 
Deception Island, Antarctica (Bartolini et  al. 2014), El 
Hierro, Canary Islands (Becerril et  al. 2014), El Misti, 
Peru (Sandri et al. 2014), Somma-Vesuvius and Campi 
Flegrei, Italy (Sandri et al. 2019; Tierz et al. 2018; Selva 
et  al. 2014; 2010), Auckland Volcanic Field, New Zea-
land (Sandri et al. 2012) and Teide – Pico Viejo, Canary 
Islands (Martí et al. 2012; 2008).

Here, we use the PyBetVH software (e.g., Wild et  al. 
2019; Strehlow et al. 2017; Tonini et al. 2015), an updated 
version of BET_VH, to conduct a PVHA for Ceboruco 
volcano (Mexico). This PVHA is intended to update 
the currently available deterministic hazard maps for 
Ceboruco with probabilistic maps. We define a generic 
ET, that is, not calibrated by current monitoring or 
related observations, for Ceboruco. Like many volca-
noes, these monitoring data are unavailable. The ET 
includes hazardous phenomena related to both magmatic 
and non-magmatic unrest (Fig.  1). We describe how 
PyBetVH is used to produce probability maps for the 
magmatic branch by merging information from the geo-
logical record (i.e., past data), numerical simulations and 
expert-based weighting of the data (i.e., prior models). 

Fig. 1 Graphical representation of the Ceboruco event tree (ET). The example illustrated here is the event tree developed for Ceboruco based on 
prior models and past data. We identify three potential causes of unrest at Ceboruco: new magma entering the system, a large tectonic earthquake 
in the graben or an increased degassing episode associated with non‑magmatic changes in the hydrothermal system. Each unrest episode has 
associated potentially hazardous phenomena. For example, we consider that rockslides and debris flows can occur at Ceboruco even if the volcano 
is not in unrest due to the instability of the volcano’s edifice and/or due to heavy rainfall. The highlighted branch and associated nodes (gray boxes) 
represent the sequence of events attributed to a potential magmatic unrest that we assess with PyBetVH. Note that some of these phenomena 
have relatively high probability in eruptive scenarios while others (e.g., debris avalanche) have relatively low probability. The ET attempts to account 
for all contingencies
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The strength of the PVHA analysis and resulting maps 
is that the numerous sources of uncertainty are incorpo-
rated in the analysis therefore being fundamentally differ-
ent to the deterministic maps produced by Sieron et  al. 
(2019b).

An important reason to develop an ET for Ceboruco 
volcano is that the volcano has been quite active within 
the last ~ 1000 yrs. but has not erupted during the 
last century. Because of this recent hiatus in activity, 
Ceboruco is less monitored than other active volcanoes in 
Mexico. We show through constructing the ET that this 
comparative under-monitoring increases uncertainty in 
probability of eruptions and probable eruption impacts. 
The resulting probability maps reflect this uncertainty. 
Consequently, in addition to estimating eruption prob-
abilities, the Ceboruco ET can be used to consider the 
cost-benefit of additional monitoring efforts, and perhaps 
also to help justify them. As this situation exists at many 
volcanoes globally, this uncertainty quantification can be 
useful for global efforts to prioritize volcano monitoring 

more systematically (Ewert et al. 2005). Finally, we show 
how a PVHA is sensitive to the assumptions about vol-
canic unrest at volcanoes with limited or no monitoring 
networks and how these assumptions affect the result-
ing probabilities, with effects on decision-making. To 
our knowledge, it is the first time this issue has been 
addressed.

Eruptive history and hazard assessment at Ceboruco
Eruptive history
Located at the western edge of the Trans-Mexican Vol-
canic Belt (TMVB), Ceboruco (2280 m a.s.l.) (Fig.  2) is 
the only historically active stratovolcano among the 
~ 28 monogenetic edifices of the San Pedro – Ceboruco 
half-graben (Sieron et  al. 2019a; Petrone 2010; Sieron 
and Siebe 2008). Its eruptive history includes both effu-
sive and explosive activity (Sieron et  al. 2019a; Sieron 
and Siebe 2008; Gardner and Tait 2000). We refer the 
reader to Sieron et  al. (2019a), Sieron and Siebe (2008), 
Gardner and Tait (2000) and Nelson (1980) for detailed 

Fig. 2 Location map of Ceboruco volcano (red volcano symbol) in the western part of the Trans‑Mexican Volcanic Belt of Mexico. The main active 
volcanoes (orange) in the TMVB: 1 – Ceboruco; 2 – Colima; 3 – Parícutin; 4 – Nevado de Toluca; 5 – Popocatépetl; 6 – Pico de Orizaba; 7 – San Martín; 
8 – El Chichón; 9 – Tacaná. The upper right inset: Digital Elevation Model (DEM) of the San – Pedro – Ceboruco half‑graben with the location of 
Ceboruco (red) within the monogenetic cones (black volcano symbols). The main communities at risk from an eruption at Ceboruco are marked 
with blue stars: I – Ixtlán del Río (pop. ~ 33,000); A – Ahuacatlán (pop. ~ 9000); J – Jala (pop. ~ 16,000); M – Marquezado (pop. ~ 1000); U – Uzeta (pop. 
~ 2000); C – Chapalilla (pop. ~ 1500) (map created using Generic Mapping Tools 6 (Wessel et al. 2019))
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descriptions of Ceboruco’s geology and eruptive history. 
Here we summarize the activity of the last ~ 1000 years 
at Ceboruco as this time span represents the basis of our 
hazard assessment and mention that stratigraphic evi-
dence indicates the volcano had a long period (~ 40 kyrs) 
of repose before that (e.g., Sieron et al. 2019a).

In the past ~ 1000 years Ceboruco experienced two 
main eruptive periods that comprised both effusive and 
explosive activity limited to the current edifice. We con-
sider an eruptive period as characterized by more or less 
continuous eruptive activity, recognizable in the geologi-
cal or historical records.

Stratigraphic evidence suggests that after a repose 
period of ~ 40 kyrs effusive activity preceded the caldera 
forming Jala eruption (VEI 6) (~ 990–1020 CE) that cre-
ated the current summit caldera (~ 3.7 km diameter). 
The Jala eruption produced extensive tephra fallout and 
numerous pyroclastic density currents (PDC) with a total 
estimated eruption volume of 3–4  km3 dense rock equiv-
alent (DRE) (Sieron et al. 2019a; Sieron and Siebe 2008; 
Gardner and Tait 2000; Nelson 1980). The PDC deposits 
formed from concentrated flows and dilute surges. Syn-
and-post eruptive lahar deposits are identified as far as 
35 km from the vent. Ballistic bombs are found within a 
5 km radius from the vent. Effusive activity persisted for 
another ~ 150 years during which time several lava flows 
were emplaced (Böhnel et  al. 2016). We consider this 
the first eruptive period. After a break of several hun-
dred years, the second eruptive period started with small 
explosions in February 1870 and continued for 5 years 
with alternating effusive and explosive activity that gen-
erated lahars, tephra fallout and PDC. The total erupted 
volume of this eruption was estimated to be ~ 0.1  km3 for 
pyroclastic deposits and ~ 1.14  km3 for lava flows (Sieron 
et al. 2019a; Sieron and Siebe 2008). Today, small urban 
centers, national freeways, railroads and agricultural land 
are constructed on these eruption deposits (e.g., Mar-
quezado, Ahuacatlán, Jala).

Deterministic Hazard assessment
Ceboruco is ranked the third most hazardous volcano 
in Mexico (Sieron et  al. 2019a; Espinasa-Pereña 2018). 
Several urban centers (> 55,000 people), as well as impor-
tant infrastructure lie within the area impacted by past 
activity (Sieron et  al. 2019a, b). Sieron et  al. (2019b) 
developed the first hazard maps for Ceboruco as part 
of a project funded by the Federal Electricity Commis-
sion that manages two hydropower plants in the area 
and the Tepic-Mazatlán sectorial power distribution sta-
tion at the foothills of Ceboruco. Based on the activity of 
the last ~ 1000 years, three possible eruption scenarios 
were defined. We refer to Sieron et al. (2019a) for a full 
description of these scenarios. Summarizing:

Scenario 1 (S1) – this high likelihood scenario con-
siders a small magnitude (i.e., VEI < 2), mainly effu-
sive eruption that will generate andesitic lava flows. 
Small explosions will likely produce ballistics and low 
ash plumes from a central or flank vents (Sieron et  al. 
2019a, b).

Scenario 2 (S2) – is a medium likelihood event (i.e., 
VEI 2–3). This medium magnitude scenario considers 
both explosive and effusive activity. The explosive activity 
is expected to produce ballistics and to be of Vulcanian 
to sub-Plinian in style with small to moderate transient 
plumes, similar to the 1870-‘75 CE eruption. Dome 
emplacement and lava flows are expected due to the high 
viscosity of the dacitic lava. Tephra fallout is expected 
and might reach a relatively large thickness near the vent 
(Sieron et al. 2019a, b). PDC and lahars are also expected.

Scenario 3 (S3) – a low likelihood, large magnitude 
eruption similar to the Jala Plinian eruption. This erup-
tion is expected to produce ballistics and widespread 
tephra fallout and voluminous PDC. Syn-and-post erup-
tive lahars are expected due to the availability of pyro-
clastic material and water during the rainy season (Sieron 
et al. 2019a, b).

The hazard maps created by Sieron et al. (2019b) used 
these three scenarios to simulate individual hazardous 
phenomena. These computer models use various source 
parameters derived from previous research, field data 
and from analogue volcanoes (e.g., ballistics), to generate 
maps with the area impacted by each eruptive phenom-
enon. The resulting maps of each of these hazards were 
integrated into a single hazard map for each of the three 
scenarios (i.e., scenario-based hazard maps) (Figs.  8, 9 
and 10 in Sieron et al. (2019b). A generalized hazard map 
for Ceboruco was obtained by integrating the three sce-
nario-based hazard maps into a single map showing the 
areas that could be affected by various volcanic phenom-
ena associated with a future eruption (Fig.  11 in Sieron 
et al. 2019b). In the following, we use the ET approach to 
assign probabilities to these eruptive scenarios and pro-
duce probabilistic hazard maps.

The event tree for PVHA at Ceboruco
We conduct a PVHA at Ceboruco volcano by design-
ing an ET (Fig. 1) that considers one magmatic and two 
non-magmatic triggers for unrest. Unrest is a diverse 
and complex phenomenon described as a deviation from 
the background activity of a volcano or by anomalies in 
monitoring data (e.g., Gottsmann et  al. 2019; Phillipson 
et al. 2013). We consider magmatic unrest as triggered by 
‘moving magma’ and non-magmatic unrest as other types 
of unrest (i.e., seismic unrest, increased degassing) not 
related to ‘magma-on-the-move’ (Rouwet et al. 2014):
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a) magmatic unrest – with a high rate of eruptive activ-
ity in the past ~ 1000 years compared to the previous 
~ 40 kyrs, we consider that future unrest at Ceboruco 
may be triggered by magma migration to shallow 
depth, convective overturn in a long-lived magma 
chamber or by fresh magma entering the chamber 
from depth (e.g., Pritchard et  al. 2019; Sparks and 
Cashman 2017; Woods and Cowan 2009);

b) seismic unrest without magmatic unrest – triggered 
by a large regional tectonic earthquake or a local 
seismic swarm. i) ‘Sulphur-smelling’ waters after two 
tectonic earthquakes in 1566 CE (Sieron and Siebe 
2008; de Ciudad 1976) and 1567 CE (Sieron and Siebe 
2008; Tello 1968) indicate changes in porosity and 
permeability that might have facilitated migration of 
magmatic gases (Sieron and Siebe 2008). ii) Núñez-
Cornú et  al. (2020), Rodríguez Uribe et  al. (2013) 
and Sánchez et  al. (2009) concluded that the seis-
mic swarms at Ceboruco are dominated by volcano-
tectonic earthquakes associated with faults in and 
around the edifice;

c) increased degassing without magmatic unrest – infil-
tration of abundant meteoric water from a passing 
hurricane may lead to an increased degassing due 
to the residual heat from cooling magma. From the 
analysis of two seismic datasets, Rodríguez Uribe 
et al. (2013) and Sánchez et al. (2009) confirmed that 
the low-frequency events recorded at Ceboruco are 
associated with movement of pressurized fluids. But 
there is no reason to conclude that seismicity always 
accompanies degassing, or vice-versa.

Several hazardous phenomena have been associated 
with non-magmatic unrest episodes (i.e., seismic and 
increased degassing) and are considered in our ET: rock-
slides, debris avalanches, debris flows, ballistics, ash fall-
out and increased fumarolic activity (Fig. 1). By including 
these events in the ET, we clarify that potentially haz-
ardous phenomena may result from both explosive (e.g., 
phreatic explosions) or non-explosive events and per-
haps may occur even if there is no evidence of unrest at 
all (e.g., Barberi et al. 1992). We emphasize that while all 
of these events represent contingencies in the ET, their 
probabilities vary.

If unrest of magmatic origin is detected at Ceboruco, 
we consider three potential outcomes: i) no eruption 
(i.e., activity subsides); ii) phreatic eruption or increased 
degassing activity (i.e., if large amounts of water infiltrate 
the volcanic system) without a magmatic eruption and, 
iii) magmatic eruption, which may include some phase of 
phreatic activity. In contrast to the latter case, the haz-
ards associated with the first two outcomes (i.e., no erup-
tion or phreatic eruption) resemble the contingencies in 

the non-magmatic unrest case, especially for locations 
proximal to the volcano. However, the occurrence of 
a magmatic eruption may result in a series of destruc-
tive phenomena that would impact the region around 
Ceboruco at different scales. We focus on the magmatic 
unrest branch and its subsequent events (the highlighted 
branch in Fig. 1). The past eruptive periods at Ceboruco 
included both explosive and effusive activity, therefore 
we model the most devastating phase of the past erup-
tions (e.g., Plinian explosive; sub-Plinian explosive; small 
magnitude eruption). We follow the three eruptive sce-
narios identified by Sieron et al. (2019b) and described in 
the previous section, acknowledging that more complex 
scenarios and cascading events are plausible.

Estimating the probabilities in the event tree: 
the calculation
The ET for Ceboruco becomes a Bayesian Event Tree 
(BET) because of the additional information we incor-
porate in the analysis. The ET and the BET have identi-
cal structure (Fig. 1), but the way in which probabilities 
are estimated is different. To estimate the probability at 
each node of the BET, PyBetVH uses prior models that 
are theoretical, statistical or numerical, and observations 
of past volcanic activity (past data) including the geologi-
cal record (Constantinescu et al. 2016; Tonini et al. 2015; 
Thompson et al. 2015; Sandri et al. 2014; Marzocchi et al. 
2010); although, parameterization without using past 
data is also possible (e.g., Marzocchi et al. 2004). Often, 
prior models rely on information such as the state of 
activity derived from monitoring (e.g., Wright et al. 2019) 
or data from analog volcanoes (e.g., Tierz et  al. 2020; 
Ogburn et al. 2016).

The background calculations performed by PyBetVH 
rely on specified data and parameters for each branch of 
the ET. Given that the first three nodes of a hypotheti-
cal BET represent questions with binary answers, the 
probability estimates are managed through a binomial 
distribution (e.g., Connor 2021; Marzocchi et  al. 2008; 
2006), which arises because (1) the volcano will enter 
into a period of unrest in the time window (e.g., 𝛕 = 1 yr) 
or not, (2) the unrest will be associated with magma or 
not, (3) the magmatic unrest will result in an eruption, or 
not. Each of these nodes will be answered yes or no, with 
some probability assigned to each event, summing to 1. If 
the ET is not Bayesian, then the probability at each node 
only depends on the sample proportion (μu) (i.e., likeli-
hood): the number of observations of an affirmative out-
come in the past (or from analogue volcanoes), y, divided 
by the number of time windows observed, n:

(1)µu =
y

n
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Consider a hypothetical volcano for which in 3 of 100 
time windows unrest is observed to begin and one time 
window includes a magmatic eruption, then the sample 
proportion for the first node, corresponding to unrest, 
is 0.03. If two of these three periods of unrest were 
observed to be magmatic, then the sample proportion 
for the second node is 0.67. If one of these two periods 
of magmatic unrest resulted in eruption then the sam-
ple proportion of the third node, magmatic eruption, is 
0.5. The product of these probabilities is the probability 
of eruption in a given time window, based only on like-
lihood, which in this example is 0.03 × 0.67 × 0.5 = 0.01. 
This result is easily checked, since one time window out 
of one hundred was observed to have an eruption.

In a BET, such as implemented in PyBetVH, the calcu-
lation starts by assuming a prior model (i.e., a prior prob-
ability based on theoretical models or expert knowledge 
of the phenomena) at each node. The sample proportion 
is then used to update the posterior probability estimate. 
When limited observations cannot provide a robust sam-
ple proportion, the probability estimate relies on prior 
functions. Conversely, if the number of past observa-
tions is large enough, prior models do not play a key role 
in the posterior estimate, which becomes dominated by 
the sample proportion (e.g., Marzocchi et  al. 2004). In 
practice, prior models are cast as a Beta distribution, 
which depends on parameters α and β that take on values 
between 0 and 1. The mean of the prior distribution (μ) at 
any binomial node is given by:

and the expected value of the posterior probability at any 
binomial node with a Beta prior distribution is (Gelman 
et al. 1995; Marzocchi et al. 2006):

The posterior probability deviates from the sample pro-
portion depending on the values of these two parameters, 
α and β. If the value of α is large compared to β, the pos-
terior probability will increase, as in the case of monitor-
ing data that indicates increased unrest. Conversely, if 
monitoring data indicates that there is no unrest, then 
β is large compared to α and the posterior probability 
will be less than the sample proportion. For the cases in 
which there are no monitoring data available to inform 
the values of α and β, then α = β = 1, μ = 0.5 and the Beta 
distribution is uniform random. This means that the pos-
terior probability will tend toward 0.5.

Suppose that for our theoretical volcano we lack con-
sistent monitoring data, then the Beta distribution is uni-
form random between 0 and 1 (α = β = 1). For the first 

(2)µ =
α

α + β

(3)E =
α + y

α + β + n

node, recall that three time windows had unrest onset 
out of one hundred observations, so we update this prior 
with field observations and the resulting posterior prob-
ability of node 1 is 4/102 = 0.039, which is only slightly 
higher than the sample proportion (0.03) because n > > α, 
β. For node 2, there are only three observed intervals 
of onset of unrest and two of these are associated with 
magmatism, so the sample proportion is 2/3 = 0.67. The 
posterior probability is 3/5 = 0.6. The prior is relatively 
more important because n is small. Stated another way, 
once the volcano enters unrest, there are many fewer 
time windows, n, and fewer observations, y, so the prior 
probability gets more weight. For the third node, there is 
one eruption for two magmatic events, the sample pro-
portion is equal to 0.5, which is the same as the prior 
mean (Eq.  2). For node three, the posterior probability 
is 2/4 = 0.5, the same as the sample proportion. Over-
all, the estimate of the absolute probability of magmatic 
eruption based on the BET in this theoretical example 
is 0.039 × 0.6 × 0.5 = 0.0117. Using the BET, the prob-
ability of the volcano erupting in a given time window 
is higher than the probability calculated using a likeli-
hood approach (0.01), which only depends on the sample 
proportions.

Of course, this probability estimate depends on the cer-
tainty with which the data are known. If, for example, it 
is uncertain how many episodes of unrest occur in the 
series, then exploration is required to bound the uncer-
tainty using alternative data. Consider the alternative 
case that there are zero observed eruptions associated 
with the two episodes of magmatic unrest. In this case, 
the likelihood approach (product of the probabilities 
based on sample proportion) is 0. The same data using 
Eq. (3) to calculate the posterior probability yield 0.006. 
That is, we are significantly less confident that no erup-
tions will occur in the time window. Conversely, if some 
sort of monitoring data were available for this theoretical 
volcano, then Eq. (3) would be modified by changing the 
values of α, β.

Subsequent nodes in the BET (Fig.  1) are not bino-
mial but their probabilities are calculated in a similar 
way (Marzocchi et al. 2006, 2010). We refer the reader to 
Marzocchi et al. (2006, 2008 and 2010) and Tonini et al. 
(2015) for a detailed description of the software imple-
mentation of the calculations of the BET structure. An 
advantage of PyBetVH is that the posterior probability 
calculation includes the distribution for the probabili-
ties, in addition to the expected values, providing a more 
complete view of the uncertainty (epistemic and aleato-
ric) in the probability estimate than is otherwise possible.

PyBetVH uses as input several text files in which the 
user specifies the values each parameter (e.g., y, n, α and 
β) is assigned in order to estimate the prior distributions 
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and the sample proportions. The software and a step-by-
step tutorial for building the input files are freely avail-
able at https:// vhub. org/ resou rces/ betvh (Tonini et  al. 
2016b) or by request to the corresponding author. In the 
next section we describe the implementation of the BET 
for Ceboruco and the choice of model input data to esti-
mate probabilities related to a magmatic eruption.

PyBetVH set‑up: the implementation of the Ceboruco BET
Nodes 1–2‑3: what is the probability of a magmatic eruption 
within the next time window?
Typically, volcanic hazard assessment and eruption fore-
casting are conducted for different time windows, from 
short-term (days, weeks after the initiation of unrest) to 
intermediate-term (months) and long-term (years to dec-
ades) (e.g., Marzocchi and Bebbington 2012; Newhall and 
Hoblitt 2002). The long-term hazard assessment is useful 
for the local authorities and stakeholders to devise plans 
and strategies for responding to future potential activity. 
A commonly used time window (𝛕) for hazard assess-
ment is 1 year (Thompson et al. 2015; Sandri et al. 2014; 
Marzocchi et al. 2008; Newhall and Hoblitt 2002). How-
ever, we suggest that this time window can be extended 
(e.g., 10 years, 100 years) when the hazard assessment 
is considered for very long-term development of infra-
structure projects (e.g., Gallant et al. 2018; Connor 2011; 
Volentik et al. 2009).

At Node 1 (N1), we want to estimate the probability of 
entering a new unrest phase within the next time win-
dow. Usually, unrest is defined by changes in the behavior 
of the volcano as observed by a monitoring network (e.g., 
Gottsmann et al. 2019; Phillipson et al. 2013). However, 
such a generalized definition of unrest is rather subjective 
and cannot be readily applied to active volcanoes that are 
poorly monitored or are not at all monitored. Ceboruco 
is under-monitored, therefore, we rely on geological 
information to determine unrest including reports of felt 
seismicity, recognizing that this lack of reliable monitor-
ing data limits our analysis to long-term PVHA and is 
associated with high epistemic uncertainty.

Geological field data suggests that a long period of dor-
mancy (~ 40 kyrs) at Ceboruco preceded the eruptive 
period that comprised the Plinian Jala eruption, its pre-
cursory effusive activity (i.e., the Destiladero lava flow; 
Nelson 1980), and the activity of the next ~ 150 years 
(Sieron et  al. 2019a, b). From 1142 CE until 1870 CE 
no magmatic eruptions were observed. This quiescent 
period was interrupted by two powerful tectonic earth-
quakes (1566 CE and 1567 CE; Sieron and Siebe 2008; 
de Ciudad 1976; Tello 1968). The aftermath of these 
events included changes in activity observed at the sur-
face of the volcano (Sieron and Siebe 2008; Tello 1968) 
and no other activity was reported for another ~ 200 yrs. 

A second eruptive period started with the reactiva-
tion of the system in 1783 CE and 1832 CE and included 
reported seismic activity (ground shaking), underground 
noise, and a water vapor plume at the summit. Decades 
later, this activity was followed by the 1870–1875 CE 
eruption. Post- 1875 CE, fumarole activity persisted until 
~ 1894 CE (Sieron et al. 2019a; Ordóñez 1896) and since 
then decreased in intensity and the fumarole temperature 
declined with time.

Occasional surveys of the fumaroles show that their 
composition is meteoric water vapor generated by the 
residual heat from the last eruption and that there is no 
magmatic component in fumarole gases or their con-
densates (Sieron et  al. 2019a; Ferrés et  al. 2019; Centro 
Nacional de Prevención de Desastres (CENAPRED) 
2016). Sánchez et  al. (2009) and Rodríguez Uribe et  al. 
(2013) analyzed several years of seismic data (2003–
2008) from one station and concluded that low-fre-
quency events indicate the presence of pressurized fluids, 
in agreement with the presence of water vapor fuma-
roles and an active hydrothermal system. Occurrence of 
VT events indicate intra-crustal stress accommodation, 
either from a magmatic body or the regional tectonic 
setting (i.e., the half-graben within which the edifice is 
located). Recently, Núñez-Cornú et  al. (2020) used data 
from four stations around Ceboruco (deployed 2012–
2014) and concluded that most of the recorded events 
follow shallow structural lineaments and have shallow 
hypocenters (< 10 km). Although insightful, these geo-
physical signals cannot serve as a basis for a wider defi-
nition of background activity and therefore unrest, since 
the network was small and deployed only temporarily. 
Sánchez et al. (2009) suggest that Ceboruco might be in 
an intra-eruptive phase while Núñez-Cornú et al. (2020) 
suggest that the seismic activity indicates local tectonic 
stresses. No other observations that may indicate changes 
in Ceboruco’s behavior have been recorded. We consider 
Ceboruco is currently not in a state of unrest.

In BET, the prior probability function is usually 
informed by monitoring data at volcanoes with a moni-
toring network. However, due to the lack of reliable and 
sustained geophysical data collection at Ceboruco, we 
consider there is no prior information about whether 
unrest will be initiated during the next time window and 
therefore set the mean prior probability at 0.5 (maximum 
ignorance), with an equivalent number of data parameter 
𝛬 = 1 in PyBetVH (indicating the maximum uncertainty 
associated with this choice) (Constantinescu et al. 2016; 
Sandri et al. 2019; Marzocchi et al. 2008).

The past data describes our likelihood function (Mar-
zocchi et  al. 2008) and is estimated from geological 
information. The lack of a high resolution geological and 
historical catalogue prohibits us to accurately determine 

https://vhub.org/resources/betvh
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if the two main eruptive periods consisted or not of sev-
eral unrest episodes. Therefore, we conservatively assume 
these two eruptive periods (i.e., the one including the 
Jala eruption and the one including the 1870-‘75 erup-
tion) represent one unrest episode each and acknowledge 
the high uncertainty associated with this choice. The 
long dormancy (quiescence) interval between these two 
unrest episodes indicates an inter-eruptive period with 
no clear signs of magma intrusion but disturbed twice 
by large tectonic earthquakes that may have perturbed 
the magmatic system at Ceboruco. We count four epi-
sodes of unrest, magmatic or non-magmatic in 1108 time 
windows. Therefore, the sample proportion, which is the 
mean of the likelihood function, is 4/1108. Because the 
mean prior probability is greater than the sample propor-
tion, the posterior probability is greater than the sample 
proportion. That is, there is a penalty for lack of monitor-
ing data.

Node 2 (N2) - Given unrest, what is the probability that 
magma is involved? An unrest episode may be magmatic 
or non-magmatic (e.g., tectonic). Given its activity of the 
past ~ 1000 years and the relatively short time since its 
most recent eruption, it is reasonable that unrest could 
be associated with magma. Ceboruco, however, lies 
within a tectonically active area within which large-mag-
nitude tectonic earthquakes are common, like the two 
earthquakes reported in the sixteenth century. Given the 
variability of both volcanic systems and tectonic regions 
we assume a prior probability distribution with μ = 0.5 
and 𝛬 = 1, indicating maximum ignorance (i.e., equal 
chances of having magmatic or non-magmatic unrest). 
The likelihood function is described by the past data 
according to which two of the four unrest episodes were 
clearly magmatic in origin (i.e., the two eruptive periods). 
As the sample proportion, 2/4, is equal to the mean of the 
prior probability, 0.5, the posterior probability for this 
node is also 0.5, which is the probability that magma is 
involved, given unrest. Or, using the nomenclature in Eq. 
(3), α = β = 1, μ = 0.5, y = 2, and n = 4., or the expected 
value of the posterior function is 3/6 = 0.5.

Node 3 – if magmatic unrest is due to magma, what is 
the probability a magmatic eruption will occur during the 
time window? Previous studies involving the use of a BET 
tool used as prior models at this node a Beta distribution 
with α = β = 1 (i.e., maximum ignorance; equal probabil-
ity of eruption or no-eruption; see Constantinescu et al. 
2016; Sandri et  al. 2014, 2009) or data from Phillipson 
et  al. (2013) which includes an analysis of 228 episodes 
of unrest (e.g., Sandri et  al. 2019; Constantinescu et  al. 
2016). According to the data set presented by Phillipson 
et  al. (2013), 64% of unrest episodes at stratovolcanoes 
lead to eruption. For comparison, Newhall and Dzuri-
sin (1988) found 38% of unrest episodes documented at 

silicic calderas led to eruption and 54% of unrest episodes 
at mafic calderas. Here, we choose maximum ignorance 
as prior probability (i.e., μ = 0.5; 𝛬 = 1). We update the 
posterior probability with past data informed by the two 
magmatic unrest episodes (i.e., two eruptive periods) that 
resulted in magmatic eruptions. The sample proportion 
is therefore 2/2. This value is modified by the prior mean, 
0.5, to yield a probability of magmatic eruption given 
magmatic unrest of 0.75.

Based on the assumptions made at the first three nodes 
from available models and geological data, we estimate 
the probability of eruption at Ceboruco in the next year 
(time window) to be ~ 0.002. If, on the other hand, the 
volcano is in a state of unrest, the posterior probability 
(magmatic eruption given unrest) is 0.375. Since the sam-
ple proportions at nodes 2 and 3 are based on very few 
events, the values assumed for parameters in the prior 
distribution (α = β = 1) are quite significant. A summary 
of the input data at the first three nodes is presented in 
Table 1.

Nodes 4 and 5: vent location and eruption type/size
We focus here on the activity at Ceboruco’s cone and 
do not consider hazards related to the monogenetic 
volcanic field surrounding the volcano, because the 
past ~ 1000 years of activity at Ceboruco was concen-
trated within the summit caldera. Therefore, we assume 
the probability of monogenetic eruptions is much 
smaller than summit caldera eruptions. Several lava 
flows occurred closer to the present caldera rim or on 
the north flanks (e.g., Copales, El Norte, Coapan lava 
flows (Fig.  8 in Sieron et  al. 2019a)), however, most 
activity was restricted to the main edifice of Ceboruco. 
We therefore consider five possible sectors for a new 
eruption to occur: - the summit caldera and four flank 
locations (North, e.g., the Coapan lava flow site; East, 
South, e.g., the Copales lava flow site; and West flanks). 

Table 1 Summary of the input data used in PyBetVH for the first 
three nodes

Nodes Input parameters (see text)

𝛕 = 1 year (forecast time window)

 Node 1 – unrest/no unrest

  Past data 4 unrest episodes (u) in 1108 
time windows

  Prior models Beta = 0.5; 𝛬 = 1

 Node 2 – origin of unrest

  Past data mu = 2 out of 4

  Prior models Beta = 0.5; 𝛬 = 1

 Node 3 – eruption/no eruption

  Past data me = 2 out of 2

  Prior models Beta = 0.5; 𝛬 = 1
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The probabilities for new vent opening were decided by 
project participants who weighted geologic evidence. 
We assume a 0.98 prior probability for the summit cal-
dera location and 0.005 for each flank sectors. Based 
on the three eruption scenarios identified by Sieron 
et  al. (2019a) and discussed in the previous section, 
we assume that future activity at Ceboruco will likely 
include a: S1 - small magnitude (effusive / small explo-
sive); S2 – medium magnitude (Vulcanian/sub-Plinian) 
and S3 – large magnitude (Plinian). The probabilities 
of these scenarios were assigned by a power-law, with 
small eruptions having a higher likelihood of occur-
rence than large events: S1–0.6, S2–0.3, S3–0.1 (e.g., 
Sandri et al. 2014; Marzocchi et al. 2008; Newhall and 
Hoblitt 2002).

Nodes 6, 7 and 8: occurrence of hazardous phenomena 
and areas impacted
We consider: lava flows, ballistics, tephra fallout for Sce-
nario 1; lava flows, ballistics, tephra fallout, PDC and 
lahars for Scenario 2 and ballistics, tephra fallout, PDC 
and lahars for Scenario 3. The prior best-guesses of 
occurrences for each phenomena conditional to the erup-
tion size were set using data from Newhall and Hoblitt 
(2002) (i.e., frequency of phenomena associated with 
eruption type) except ballistics that has a probability of 
1, acknowledging that some phenomena may be under-
reported. Further, we divide the area around Ceboruco in 
a grid of 500 m × 500 m cells and compute the probabil-
ity of each cell to be invaded by a selected phenomenon. 
The modeling-based maps shown in Sieron et al. (2019b) 
serve as prior models in our PyBetVH analysis. We refer 
the reader to Sieron et al. (2019b) for a detailed descrip-
tion of the methodology, the simulation tools utilized to 
model each selected phenomenon, and the output maps. 
As past data we use the area covered by the deposits of 

past eruptions associated with each phenomenon and 
eruption size (Sieron et al. 2019a).

We parameterize past data and prior models by assign-
ing a probability for each grid cell based on the frequency 
of inundation by a volcanic phenomenon during past 
eruptions (i.e., past data) or as indicated by the numeri-
cal modeling presented in the Sieron et al. (2019b) (e.g., 
if a grid cell was affected by one simulation from a total 
of three, the prior probability of the grid cell will be 1/3; 
if there is only one past eruption and a given grid cell was 
affected, then the prior probability is 1 (1/1).

In Table 2 we present a summary of the hazards consid-
ered for each scenario and the PyBetVH input data.

Probability maps
The absolute probability maps (Figs.  3 and 4) produced 
by PyBetVH show the combined mean probabilities that 
an area is invaded by a volcanic phenomenon regardless 
of the eruption size and vent location (i.e., considering 
the occurrence of an eruption of any size from any vent) 
within a 1-year time window.

Ballistics. We use 540 simulations made with the Eject! 
Code (Mastin 2001) and field measurements of dis-
tances travelled by the ballistics of the Jala eruption (i.e., 
Scenario 3) (Sieron et  al. 2019a) to estimate the poste-
rior probabilities. The simulated parameters included: 
- ejection angles between  350 and  890; ejection veloci-
ties between 150  ms− 1 and 250  ms− 1 and bomb radii of 
10 cm to 100 cm. A detailed description of how these 
simulations were conducted is presented in Sieron et al. 
(2019b). The map (Fig.  3a) shows the highest probabili-
ties (~ 1–2 ×  10− 3) around the summit caldera, decreas-
ing with distance for approximately 5 km. The flanks 
of Ceboruco up to 5 km away from the vent are 
uninhabited and several crop fields lie at the base; 
however, the telecommunications towers located 

Table 2 Summary of the hazardous phenomena considered in our event tree for each of the three scenarios considered. For past 
data we have the number of times the selected phenomena occurred at past eruptions. Most past data are considered for Scenario 3 
(Plinian eruption) due to the better preservation and mapping of the deposits of the Jala eruption. As prior models we used the maps 
created by various simulation tools used by Sieron et al. (2019b) for each considered phenomenon

Hazardous phenomena Past data Prior models

Scenario 1 Scenario 2 Scenario 3

Ballistics 0 0 1 540 simulations with Eject! (Mastin 2001)

Tephra fallout 0 0 1 S1 and S2: 24 simulations with HAZMAP (Mac‑
edonio et al. 2005)
S3: 1000 simulations with Tephra2 (Bonadonna 
et al. 2005)

Pyroclastic density currents – 0 1 66 simulations with Titan2D and Energy Cone
(Patra et al. 2005, Schilling 1998)

Lahars – 0 1 54 simulations with LaharZ (Schilling 1998)

Lava flows 1 1 – 539 simulations with ELFM (Damiani et al. 2006)
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on the NE of the caldera rim will likely be affected 
by ballistics, with considerable impact on regional 
communications.

We considered lava flows in scenarios 1 and 2. Fig-
ure 3b shows the extent of the lava flows is comparable 
with the results from the numerical modeling in Sieron 
et al. (2019 b). The areas of higher probability (~ 8 ×  10− 4 
– 1 ×  10− 3) correspond to the areas inundated most often 
in simulations (i.e., ~ 5–10 km to the north, north-east 

and south-west) and the areas where past deposits were 
identified (i.e., north). Areas of very low probability (near 
zero) on the south-east and west flanks correspond to 
topographic barriers and have not been affected by sim-
ulations (Sieron et  al., 2019b). The towns of Ahuacatlán 
(pop. ~ 9000) and Jala have relatively high probabilities 
(~ 4–6 ×  10− 4) of being affected by lava flows. Smaller 
communities to the South and West as well as important 
infrastructure (e.g., major roads) to the South and North 

Fig. 3 The absolute annual probability maps for: a ballistics; b lava flows and c pyroclastic density currents. Both PDC and lava flows show 
considerable probabilities for Ahuacatlán and Jala to be impacted should an eruption occur within the next time window (i.e., 1 year). The 
infrastructure built around Ceboruco will likely be affected by these phenomena. The ballistics map shows highest probabilities within the summit 
caldera
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(some already built on lava flows) have significant prob-
abilities (~ 6.5 ×  10− 4) of being affected.

Pyroclastic density currents (Fig.  3c). We consider 
both end members of pyroclastic density currents 
(flows and surges) and use past data (from Jala erup-
tion) and simulations (i.e., Titan2D; Patra et  al. 2005) 
for flows and the Energy Cone module in LaharZ (Schil-
ling 1998) for surges) to estimate posterior probabilities 

for these hazardous phenomena. Sieron et  al. (2019b) 
simulated pyroclastic flow volumes of 0.025–0.125  km3 
and 0.5–1  km3 for Scenario 2 and 3 respectively. The 
H/L values selected for simulating pyroclastic surges 
were 0.14–0.17 and 0.07–0.12 for Scenario 2 and 3. A 
detailed description of the methodology and a full list 
of the parameters used for these simulations is provided 
in Sieron et al. (2019b). The PDC map shows the highest 

Fig. 4 The absolute annual probability maps for a tephra fallout and b lahars. Ceboruco’s flanks and immediate surroundings have a higher 
probability of being inundated by a lahar, whereas the areas downstream the Ahuacatlán river show a lower probability. This is assumed to be due 
to the loss of particles as sedimentation occurs within a lahar and captured in the simulations. Tephra fallout maps rely heavily on the numerical 
simulations and prior models show that the expected areal distribution of tephra is controlled by the prevailing winds at tropopause levels for a 
large eruption and by the smaller variable wind fields at lower altitudes for smaller events
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probabilities of PDC inundation (> 5 ×  10− 4) within 
10 km of the vent. The valleys and some interfluves at 
> 10 km from the vent have a lower probability of inun-
dation attributed to the simulated surges and field data 
from past large magmatic eruptions, in cases overrid-
ing geographic barriers such as the NE edge of the gra-
ben. The towns of Ahuacatlán and Jala, both at ~ 10 km 
from the vent, along with several smaller communi-
ties, have relatively elevated probabilities (~ 1–3 ×  10− 4) 
of being affected by PDC deposits, along with existing 
infrastructure.

Tephra fallout hazard is evaluated for all three erup-
tion sizes. Sieron et  al. (2019b) describe in detail the 
methodology used for simulations of tephra fallout that 
serve as prior models in our analysis. Figure 4a shows 
the average annual probability map for the accumula-
tion of at least 10-cm-thick tephra layer, acknowledging 
that tephra accumulations of < 10 cm will have a wider 
impact. The distribution of the probabilities is strongly 
controlled by the spatial extent of tephra in the numeri-
cal models since we lack a good set of field data (only 
one set for Jala eruption, Scenario 3). The widespread 
tephra deposit to the NE is associated with a large Plin-
ian eruption and it is controlled by the prevailing winds 
at high altitudes (and illustrated by the numerical simu-
lations). The higher probabilities closer to the volcano 
are associated with the thickening of tephra deposits 
near the vent and with sedimentation from lower tran-
sient plumes affected by the variable monthly wind field 
at lower altitudes. However, the monthly wind profiles 
may hide the daily variability of winds with unusual 
directions (e.g., Michaud-Dubuy et  al. 2021). All com-
munities to the East, South and West of Ceboruco will 
be impacted by tephra fallout and significant damage is 
expected to the agricultural lands and the infrastruc-
ture in the area.

Lahars (syn-and-post eruptive) are considered for 
both S2 and S3 eruption scenarios due to the avail-
ability of fresh pyroclastic material during such events 
and the availability of water during the rainy season 
at Ceboruco or a passing tropical storm. Lahar depos-
its have been identified in the field and associated with 
the large Jala eruption (Sieron et al. 2019a). We use the 
extent of past lahars and simulation with LaharZ as 
input data in PyBetVH. The average probability map 
of lahar inundation is shown in Fig.  4b. Unlike Sieron 
et al. (2019b) who considered lahar hazards as far north 
as the Grande de Santiago river, we focus our assess-
ment on Ceboruco and its main drainage network and 
tributaries to the Ahuacatlán river. The highest prob-
abilities are within the drainage network of Ceboruco 
(> 1.7 ×  10− 4) and the towns of Jala and Ahuacatlán, as 
well as the nearby infrastructure. Marquezado, Uzeta, 

Tetitlan and the area of the drainage network of the 
Ahuacatlán river to the SW have relatively high prob-
abilities of being affected by lahars (> 1.7 ×  10− 4).

In the Additional Material 1 we present the condi-
tional probability maps for each considered phenomena 
(i.e., occurrence of hazards is conditional to the occur-
rence of a specific eruption size from the central vent).

Discussion
The event tree and the probability of eruption
Volcanoes, active or extinct, are inherent sources of haz-
ard conditioned to the occurrence of a specific triggering 
event (e.g., a magmatic eruption may trigger a PDC or a 
tectonic earthquake may trigger slope failures and debris 
avalanches at extinct or long dormant volcanoes). Given 
the complexity and intrinsic variability of volcanic sys-
tems, PVHA (Marzocchi et al. 2010; Marzocchi and Woo 
2007) is preferred to a simple deterministic approach 
based on the extent of deposits of past eruptions or on 
several numerical simulations. Although we acknowl-
edge that both approaches are complementary and mutu-
ally informative (e.g., Tierz 2020; Rouwet et  al. 2019) 
the event tree approach provides a useful tool to visual-
ize and estimate the probabilities of occurrence of vari-
ous hazards at different time scales (Punongbayan et al. 
1996; Marzocchi et al. 2008; Newhall and Hoblitt 2002). 
To fully benefit from the use of event trees, these have 
to comprise a wide range of volcanic events, magmatic 
and non-magmatic. Therefore, they can provide a clear 
and broad view of the possible hazardous phenomena 
related to the volcanic system and how these may affect 
the area during a long-term period. This is potentially of 
great interest to local authorities and stakeholders who 
often make decisions regarding long-term investments in 
the local community. Important infrastructure projects 
are developed to last for decades and the sites selected 
for their development must be considered carefully with 
respect to an acceptable level of hazard even if the prob-
ability of occurrence is very small (e.g., Connor 2011). 
The advantage of a probabilistic approach in hazard 
assessment is that it can account for all probable events; 
although, accounting for all possible hazard outcomes 
can be challenging (Rougier and Beven 2013). Further-
more, a probabilistic approach can account for associated 
uncertainties (aleatoric and epistemic) and provide an 
easy way to visualize them.

When direct evidence of occurrence of a specific erup-
tive phenomenon is not identified in the past deposits, 
information from analogue volcanoes is sometimes used 
(e.g., Ogburn et al. 2016). Most volcanoes have very long 
periods of inactivity (dormancy) and are often consid-
ered extinct or less dangerous and their fertile slopes 
attract cultivation. To complicate forecasting, most active 
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volcanoes are poorly monitored, or not monitored at 
all (e.g., Loughlin et  al. 2015). With an ever-increasing 
population around active volcanoes, we need to look at 
a broad range of volcanic processes in order to consider 
all the ways a volcano might impact us. A volcano poses 
multiple threats, not only related to a magmatic eruption. 
Hazards can occur long after the volcano goes extinct. 
However, our human perspective forces us to consider 
the most dramatic events in our hazard assessments 
and those are more often than not related to a magmatic 
eruption. Here we developed a generic event tree for 
Ceboruco volcano and try to account for all the possible 
outcomes regardless of the involvement of renewed mag-
matism. We attempt to show that estimating probabilities 
of each outcome can be challenging depending on the 
assumptions made about the volcano.

Bayesian methods and the introduction of prior dis-
tributions is important in hazard assessment, especially 
when we have a sparse record of events, such as the case 
for periods of unrest at Ceboruco volcano. When there 
are many data, the prior distribution has little impact on 
the probability, but for nodes represented by few obser-
vations, the parameters of the prior distribution are of 
critical importance. Consider two scenarios in which 
Ceboruco is currently in the state of: a) no unrest, or b) 
unrest. We explore the effects of the likelihood and prior 
functions on the posterior probability estimates for the 
first three nodes of the ET (Fig. 5a, b). When the volcano 

is not in a state of unrest, such as when we need a long-
term forecast, based on our interpretation of the recent 
eruptive history at Ceboruco (i.e., four unrest episodes 
with two of magmatic origin) (Fig. 5a) the probability of 
entering unrest in the next time window is 0.0036 (black 
line - ‘triangle’ marker, Fig. 5a) and the overall probability 
of eruption based only on the mean likelihood function 
is 0.0018  (PLK, Fig.  5a inset). Although unlikely, the fact 
that the volcano is not monitored extensively and contin-
uously may justify a conservative assumption that after 
~ 40 kyrs of quiescence Ceboruco entered unrest before 
the Jala eruption and continues today (i.e., second sce-
nario). We know this unrest is magmatic. Based on the 
likelihood function, the overall probability of eruption is 
1  (PLK, Fig. 5b inset). Therefore, a hazard analysis based 
only on the limited geological record is highly biased and 
poorly informative for such a short time window.

In a Bayesian analysis however, if we assume the sim-
plest prior model with maximum ignorance (i.e., μ = 0.5; 
𝛬 = 1) at each of the first three nodes, the posterior 
probability at Node 3 decreases by > 20% (blue line - ‘x’ 
marker, Fig. 5a, b) but is associated with high uncertainty 
(σ2 = 0.03 to 0.05). The overall probability of eruption 
also decreases slightly to 0.0016 in the first scenario and 
significantly, to 0.66, in the case of the second scenario 
 (P50, Fig.  5a, b insets). These estimates are better than 
those based only on the likelihood, but they are associ-
ated with large uncertainties.

Fig. 5 a The probabilities of the first three nodes of the ET given Ceboruco is not currently in unrest. The black line with triangle markers shows 
the probabilities based on the mean likelihood functions. The blue line with cross markers, represent the probabilities using maximum ignorance 
at each node plus likelihood functions. The green line with circle marker corresponds to the case in which node 3 uses 64% of unrest leading to 
eruption (Phillipson et al. 2013) with high uncertainty whereas the red line with plus marker uses the same information but with higher confidence 
in the data (lower uncertainty). b The probabilities of the first three nodes of the ET given Ceboruco is currently in unrest (i.e.,  Punrest = 1). The colored 
lines correspond to the same assumptions at each node as described for the first scenario. The figure insets show the overall probability of eruption 
for the two scenarios:  PLK – probability estimate based on the likelihood function alone;  P50 – adding maximum ignorance at each node;  Ph‑u – 
adding Phillipson et al. (2013) data at node 3 with high uncertainty (high variance);  Pl‑u – adding the same data but with more confidence (low 
variance). NOTE: the probability scale in panel a) is log
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The Phillipson et  al. (2013) dataset indicates that 
approximately 2/3 of stratovolcanoes entering unrest will 
have an eruption and this information was used in other 
BET studies (e.g., Sandri et al. 2019; Constantinescu et al. 
2016). We can use this information, or information from 
other data sets, to design a prior function for node 3 by 
adjusting the α and β parameters of the distribution. 
With no monitoring data, this information must be used 
cautiously as adjusting the values for α and β leads to a 
higher or lower confidence in our data. For example, for 
Beta (α = 64; β = 36), which indicates a higher confidence 
in our assumption, the probability at node 3 decreases in 
both scenarios (σ2 = 0.002) (red line - ‘+’ marker, Fig. 5a, 
b). Conversely, for Beta (α = 6.4; β = 3.6) the same prob-
ability increases again but this time with higher uncer-
tainty (σ2 = 0.03) (green line - ‘o’ marker, Fig.  5a, b). 
This is also reflected in the overall probabilities of erup-
tion  (Pl-u and  Ph-u in Fig.  5a, b insets). This shows that 
although the posterior probabilities estimated via a BET 
analysis differ substantially to those based on the likeli-
hood function alone, they are still associated with uncer-
tainties that can only be reduced with monitoring data.

Although a commonly accepted time window for vol-
canic hazard assessment is one-year (e.g., Thompson 
et al. 2015; Sandri et al. 2014; Newhall and Hoblitt 2002), 
the annualized probability is often extensible to longer 
periods. Decisions regarding the development of impor-
tant infrastructure projects (e.g., bridges, dams, power 
plants) might benefit of an analysis that considers longer 
time windows, i.e., 10 years or more (e.g., Connor 2011). 
This requires a high-quality eruptive history catalogue 
and the incorporation in the analysis of events that occur 
at larger time scales even though they may be extremely 
unlikely (e.g., Marzocchi and Bebbington 2012; Con-
nor 2011). For a 10-year time window the overall prob-
abilities of eruption at Ceboruco will increase ten times 
if we assume the volcano is not currently in unrest. If 
Ceboruco is in unrest, the ET can also be parameterized 
from node 2 and used to estimate the subsequent condi-
tional probabilities (e.g., Queiroz et al. 2008).

All things considered, a PVHA at Ceboruco, or any 
other under-monitored volcano, is highly sensitive to the 
definition of unrest and the prior probability estimates, 
and both depend on geophysical monitoring and/or on 
a rigorous eruptive catalogue. Without consistent data 
from a developed and continuous monitoring network 
to inform the hazard assessment, the final probability 
estimates are associated with high uncertainties. These 
uncertainties in both the prior and likelihood functions 
are propagated to the posterior probability estimates; 
the only solution to refine the PVHA and deal with 
the uncertainty is the development of a real-time and 

continuous monitoring network and to conduct more 
detailed field studies.

Limitations and advantages of using PyBetVH
The ability to combine multiple sources of information, 
as well as the possibility of exploring various combina-
tions of eruptive scenarios leads to a better estimate of 
the uncertainty associated with different hazard maps. 
Probabilistic hazard maps are usually conducted for a 
single volcanic phenomenon by using different numeri-
cal simulation tools (e.g., Charbonnier et  al. 2020; Gal-
lant et  al. 2018; Strehlow et  al. 2017; Selva et  al. 2014). 
PyBetVH can merge the outputs of different simulation 
tools with geological data and assess the uncertainty 
range associated with the average prior probability pre-
sented in each map. In Fig. 6, we show an example of the 
uncertainty range (i.e., 10th, 50th and 90th percentiles) 
in the conditional probability maps for PDC (conditional 
to the occurrence of a Plinian eruption (S3). These maps 
provide an easier way to evaluate our confidence in the 
hazard maps, a useful feature for decision makers (e.g., 
Tierz et al. 2018; Thompson et al. 2015; Sandri et al. 2014; 
Lindsay et al. 2010).

PyBetVH has an easy-to-use graphical interface 
(Tonini et  al. 2015) that allows the user to update the 
input files as soon as more information becomes avail-
able. The current version of PyBetVH was developed to 
analyze volcanic hazards associated to magmatic unrest 
only. However, recent efforts helped describe and rec-
ognize indicators for non-magmatic unrest and related 
hazards (Rouwet et  al. 2014). The implementation of a 
non-magmatic branch in the ET is important for short-
term forecasting applied to monitored volcanoes (Tonini 
et al. 2016a).

Although PyBetVH produces separate probability maps 
for each selected volcanic phenomenon, the user has the 
option to download the datafiles and plot them using 
other tools to create an aggregated hazard map that can 
provide a rapid view of all possible volcanic phenomena 
at Ceboruco.

Conclusions and final remarks
We conduct a PVHA for Ceboruco, an active but poorly 
monitored volcano in the western part of the TMVB. 
This work represents an effort to update the volcanic 
hazard assessment at Ceboruco by conducting a proba-
bilistic analysis that incorporates different sources of 
uncertainty. Based on the eruptive scenarios proposed by 
Sieron et al. (2019b), we create a generic ET for Ceboruco 
to account for magmatic and non-magmatic activity. 
For the magmatic eruption branch of the ET, we choose 
three scenarios: i) small magnitude (effusive/explosive), 
ii) medium magnitude (Vulcanian/sub-Plinian) and iii) 
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large magnitude (Plinian); with their related hazardous 
phenomena: ballistics, tephra fallout, pyroclastic den-
sity currents, lahars, and lava flows. We use PyBetVH, 
an e-tool based on the Bayesian event tree methodol-
ogy, to create probabilistic hazard maps for each of the 
selected eruption scenarios. Using geological data with 
outputs from other numerical and theoretical models 
in PyBetVH, we estimate the probability of a magmatic 
eruption at Ceboruco within the next time window (i.e., 
1 year) of ~ 0.002. The resulting maps show the absolute 
annual probability for the communities and infrastruc-
ture around Ceboruco to be impacted by lava flows, 
PDC, tephra fallout and lahars. The ballistics will likely 
impact only the cone area. While the deterministic maps 

presented by Sieron et  al. (2019b) represent a first step 
towards quantifying volcanic hazard at Ceboruco, are 
easy to interpret by the general public and are an asset 
in case of a volcanic emergency, the maps presented here 
are fundamentally different. These maps do not show 
just a footprint of the hazard but rather provide prob-
abilities of the areas around the volcano to be affected 
by potential hazardous phenomena. These maps assign 
a probability to a particular scenario given the current 
state of unrest at the volcano (i.e., no unrest). However, 
should any activity be detected, the current estimates will 
have to be updated by running the model with the newly 
available information incorporated in the event-tree. The 
probability maps can be a useful tool for authorities and 

Fig. 6 Example of uncertainty in the pyroclastic density currents hazard probability maps for a large Plinian eruption (Size 3). We show the a 10th 
percentile; b the average, and c the 90th percentile maps for the conditional probability (i.e., conditional to the occurrence of a Plinian eruption at 
the central vent)
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stakeholders in the decision-making process. We believe 
the decisionmakers will find the probabilistic results use-
ful, especially if they are able to compare probabilities 
with other potential events that may affect the commu-
nity. For example, globally, in a community, children are 
the people least likely to die in a given year, with a proba-
bility of dying of around 1/10000 with higher rates among 
children in rural communities (Svenson et  al. 1996). A 
probability of 1/500 or 1/1000 of PDC inundation of their 
community (Fig. 6) is a high probability for children in a 
community because it considerably increases their prob-
ability of dying in a given year considerably. Of course, it 
is up to the community to decide which level of probabil-
ities are unacceptable, but such comparisons can provide 
context and these comparisons rely on valid probabilistic 
hazard maps.

Our analysis indicates that PVHA at poorly moni-
tored volcanoes relies mostly on the likelihood function 
(informed by geological data) and/or maximum igno-
rance for prior distribution functions. These estimates 
are associated with high uncertainties which can be sig-
nificantly reduced by refining the prior distribution func-
tions with information from geophysical monitoring (e.g., 
Wright et al. 2019).

We recognize the numerous efforts by academic and 
government institutions, and we recommend the set-up 
of at least a minimal permanent monitoring network at 
Ceboruco with the capabilities to provide real-time geo-
physical data continuously. Another important consid-
eration at Ceboruco is to extend the event tree presented 
here to include the surrounding monogenetic field.
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