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How big will the next eruption be?
Paul Colosi and Emily E. Brodsky* 

Abstract 

Anticipating the size of the next volcanic eruption in long-term forecasts is a major problem in both basic and applied 
volcanology. In this study, we investigate the extent to which eruption size is predictable based on historical and 
other attribute data. Data from the Smithsonian Global Volcanism Program (GVP) Catalog is used to determine the 
predictability of volcanic eruption size as quantified through the reported VEI (Volcano Explosivity Index). The numeri-
cal and categorical attributes from the global volcanic catalog were classified with trained random forest and simple 
prediction models to make a forecast of VEI that can be tested against the most recent eruption of each volcano. 
We compare these results to two different baseline predictability levels by: (a) selecting randomly from the global 
distribution of VEIs for the most recent eruptions to calculate a cohort baseline and (b) selecting the most frequent 
VEI for a given population to calculate a zero-rule baseline. We found that: (1) nearly any method that incorporates 
prior information on a specific volcano improves the prediction accuracy of the succeeding eruption VEI by at least 10 
percentage points relative to the cohort baseline case, (2) incorporating attributes beyond previous VEIs can provide 
better accuracy and achieve up to 30 percentage point accuracy gains, (3) total accuracy of the VEI forecasting by 
these methods can be up to nearly 80% and (4) the zero-rule is an effective prediction method that is modestly out-
performed (~ 5 percentage point gain) by random forest methods with multiple attributes on most datasets. We find 
no notable preference in accuracy based on volcano type. The results quantify the importance of volcano-specific 
information in long-term forecasting and may help practitioners assess their expected performance when anticipat-
ing future eruption size.
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Introduction
Volcanic eruption forecasting involves anticipating the 
location, timing, size, and type of eruption with as quan-
titative probabilities as possible (e.g., Decker 1986). Such 
efforts are normally informed by a combination of in situ 
monitoring, past eruptive history, and generalized under-
standing of the behavior of similar volcanoes. This blend-
ing of data types needs to be done on a case-by-case basis 
for both long-term and short-term forecasting. Predic-
tive success has been evaluated retrospectively based on 
whether or not any eruption occurred when expected 
(Cameron et al. 2018; Caudron et al. 2020; Papale 2017; 
Poland & Anderson 2020; Winson et  al. 2014). These 

studies are an important stepping stone to quantifying 
the degree of certainty in the forecasts and improving the 
probabilities assigned to anticipated outcomes.

A different set of studies have evaluated the power of 
long-term forecasts based on the historical record and 
a small subset of these has focused specifically on the 
ability to forecast eruption size, rather than time (e.g., 
Bebbington 2014; Mendoza-Rosas & De la Cruz-Reyna 
2008). Parameterized statistical models have been used 
to fit the observed distribution of eruption sizes and 
sometimes additional information has been incorpo-
rated such as repose time (e.g., Bebbington 2014). These 
studies to date have primarily focused on the handful 
of volcanoes on which sufficient data is present to fit 
the statistical models. This approach has had some suc-
cess in evaluating physics-motivated hypotheses such as 
volume-predictability, however, it can only be applied to 
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a very limited set of situations with sufficient informa-
tion available. Such volcanoes are preferentially basaltic 
with short recurrence times. There is a gap in assessing 
long-term forecasting strategies of eruptive size based on 
the global catalog, which encompasses much more gen-
eral cases than can currently be captured by individual 
focused studies.

As previous authors have noted, the parameterized 
approach has a second shortcoming in that it requires 
significant modification to incorporate additional infor-
mation that might be relevant such as a volcano’s mor-
phology or typical petrology (Marzocchi & Bebbington 
2012). A similar line of thinking underlies the VOLCANS 
method of identifying analog volcanoes (Tierz et  al., 
2019). Common practice might bound the expected Vol-
cano Explosivity Index (VEI) in the next eruption based 
on these considerations. For instance, a basaltic shield 
volcano is much less likely to produce a VEI 6 eruption 
than a caldera with rhyolite flows. It would be helpful to 
incorporate this general knowledge of volcano behavior 
that is based on global patterns into a quantitative fore-
casting scheme.

Here we attempt to grapple with both of these gaps in 
forecasting volcanic size. We first aim to retrospectively 
forecast eruptive size in the common situation of data-
poor volcanoes and assess the results. Based only on the 
admittedly problematic general-purpose catalogs avail-
able, how well can we apply knowledge from the global 
database to anticipate the size of the next volcanic erup-
tion at a particular volcano? This is a practical question 
that influences the appropriate mitigation measures. It 
is also a question that could benefit from direct quanti-
fication to establish a point of reference for other, more 
sophisticated approaches. Secondarily, we aim to com-
bine information from both the (limited) history of each 
volcano with other aspects of the volcano that are gener-
ally databased and might influence a professional’s judg-
ment of likely future behavior.

In this study, we specifically ask to what degree eruptive 
size as quantified by the Volcano Explosivity Index (VEI) 
can be anticipated based on the global eruption database 
as currently available in the most commonly utilized 
database which is the Global Volcanism Program Volca-
noes of the World (Global Volcanism Program, 2013). We 
fully realize that for individual eruptions more informa-
tion is commonly available, such as in  situ monitoring. 
However, we also recognize that instrumentation is often 
limited. It is useful to understand to what degree future 
eruptive size can be anticipated based on past history and 
general volcano features in light of the trends captured in 
the global database.

The strategy of this study is to avoid parameterization 
by utilizing two distinct methods to mimic and formalize 

common geologic practice. We first use simple predic-
tors based on the previous history, such as median pre-
vious VEI, to predict future behavior. We then also use 
a machine learning algorithm to determine the predict-
ability of volcanic eruption VEI with groups of attributes 
consisting of historical data from eruptions and intrin-
sic properties of volcanoes. We compare the prediction 
accuracy of both methods to a baseline case of randomly 
selecting VEI from the historical database. This empiri-
cal, rather than analytical, cohort prediction allows 
empirical determination of the variability of the predic-
tion, which is useful to assess the import of apparent 
differences between models. The cohort prediction base-
line preserves catalog artifacts and allows us to evaluate 
the relative efficacy of approaches in the presence of the 
non-idealities in the data. We also examine an alterna-
tive baseline by predicting that all eruptions in a given 
population will have the modal VEI for that dataset. 
Since all eruptions in the population have the same pre-
diction with no further decision-making necessary, this 
second baseline is known as a zero-rule approach (Wit-
ten et al., 2017). It is the more stringent standard for per-
formance and turns out to be a very effective method in 
itself. Robustness of the results is assessed by comparing 
forecasting skill for various subsets of the data to both of 
the baselines and examining which trends appear to be 
robust to selection criteria.

Data
We use the Smithsonian Global Volcanism Program 
(GVP) database to provide numerical and nominal attrib-
utes for a global record of volcanoes and their eruption 
events during the Holocene (Global Volcanism Program, 
2013). Data was downloaded in Februrary 2019 and thus 
is complete through 2018. This data was then separated 
based on the available history. Volcanoes with more than 
2 eruptions in the Holocene were used to train the model 
and provide the initial evaluation metrics. We call this 
group the historied volcanoes. Volcanoes with less than 
2 Holocene eruptions documented are called unhisto-
ried and reserved for a test data set for late in the study to 
evaluate both the robustness of the model and the impor-
tance of history in predicting behavior.

We use VEI as a measure of eruptive size (Newhall & 
Self 1982). VEI has its limitations. For instance, VEI is not 
designed to differentiate effusive eruptions that might 
have common-sense distinctions based on eruptive vol-
ume. VEI is also intrinsically a coarser measure than 
other magnitude and intensity scales (Houghton et  al. 
2013; Pyle 2015). The published catalog is incomplete 
for small eruptions, and under-recording varies region-
ally and temporally (Mead & Magill 2014; Sheldrake & 
Caricchi 2017; Wang et al. 2020). Catalog procedures also 
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affect the data. For instance, eruptions that are explo-
sive but have otherwise insufficient data to determine an 
accurate VEI are recorded with a default value of VEI 2 
leading to an over-representation of VEI 2 in the database 
(Siebert et al., 2010). Despite the limitations of both VEI 
and the global catalog, we utilize this database because 
the practical goal of this study is to quantify the degree 
of predictability based on the global patterns. The large 
database is essential for training any automated classi-
fier method and no other standard measure of eruptive 
size can be currently utilized in this way on such a large 
dataset.

We attempt to mitigate the problems with VEI by 
considering subsets of the data which will have differ-
ent completeness characteristics and other biases. By 
comparing results across these suites we can assess the 
robustness of various VEI-forecasting strategies. There-
fore, we perform all analyses on the full dataset (mini-
mum VEI 0), as well as subsets with minimum VEIs of 
1, 2, and 3. We also consider a subset of the data with 
all VEIs other than 2 to specifically eliminate the default 
values. It should be noted that the thresholded subsets 
produced unhistoried volcanoes in the higher thresholds 
(VEI ≥ 1,2,3) that were recorded as historied volcanoes 
in a lower threshold group. Thus the number of historied 
and unhistoried volcanoes varies with VEI selection cri-
teria. This was most extreme for the highest complete-
ness threshold of VEI ≥ 3 because of the scarcity of large 
volcanic eruptions.

We also subset the data based on year. Although there 
are significant regional variations, ~ 1500 marks a major 
change in the VEI completeness (Mead & Magill 2014). 
This retrospective study tries to mimic modern efforts 
to anticipate future VEI and thus the post-1500 catalog 
is probably a more appropriate comparison than the full 
Holocene record. We therefore limit the primary results 
to volcanic eruptions that only occurred after the year 
1500 but retain and present the full Holocene catalog 
results as a secondary result for reference.

The forecasts here use attributes that include three 
types of measures: (1) intrinsic features of a volcano such 
as petrology or morphology, (2) additional measures of 
volcanic history, i.e., the repose time since the previous 
eruption and eruption duration and (3) statistics based 
on the VEIs of prior eruptions at a volcano (Table 1).

The intrinsic attributes of volcanoes include both 
numeric and categorical data types. Dominant petrology 
is used as a numeric value by converting the named rock 
type into the silica content for use in a collective numeri-
cal attribute model (Le Bas et al. 1986). The original cate-
gory of dominant petrology is also retained and used as a 
categorical variable in all other models. Morphology and 
tectonic settings are used as categorical (nominal) data 

types in the classification procedure. Morphology catego-
ries are condensed from the original database into 6 cate-
gories as shown in Table 2 following Pesicek et al. (2021).

For the additional measures of volcano history, we cal-
culate the repose time and previous eruption duration by 
differencing the reported start and end dates. These val-
ues therefore are only utilized when start and end dates 
are reported.

The statistical measures in the first category are the 
last, median, minimum, maximum, and mode VEI 
from the historical database excluding the most recent 
eruption, which is reserved as a target value to be fore-
cast. Since VEI is limited to integer values, medians are 
rounded so as to yield realizable predictions.

Methods
For each volcano, we attempt to retrospectively forecast 
the VEI of the most recent recorded eruption with a suite 
of methods. Success is measured based on the fraction of 
volcanoes with the most recent eruption VEI successfully 
forecast by each method. Since we are only forecasting 
one eruption per volcano, we do not score performance 
on each volcano individually and only consider global 
measures.

These forecasts are achieved using two types of meth-
ods: simple predictions based on VEI history and random 
forest classifier, which is a standard machine-learning 
classification method described below.

Simple Forecasts Based on VEI History
The first method is a simple prediction based solely on 
the VEI-history of a particular volcano as recorded in 
the global catalog. This procedure is meant to mimic 
the common sense approach of simply asking if the 
next eruption is likely to be similar to the last eruption. 
More specifically, we compare the most recent erup-
tion recorded at each volcano to five different statistics 
of the prior eruptions: last (most recent prior eruption), 
median, mode, minimum, and maximum VEI. If any of 
these statistics for that volcano are equal to the most 
recent recorded VEI, then a forecast based on that par-
ticular statistic is marked as correct.

The performance needs to be compared to meaning-
ful baselines meant to capture the probability of a chance 
accurate forecast. Since the catalog contains artifacts and 
each of the subsets has a distinct distribution of VEIs, we 
measure the baseline case empirically two ways. The first 
is a cohort baseline for each group of data that was calcu-
lated by producing a cumulative density function (CDF) 
of VEI from the most recent eruption of each cataloged 
volcano. This empirical CDF was then randomly sampled 
and then tested against the most recent eruption VEI 
of each volcano to compute the baseline accuracy and 
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its standard deviation. The second is a zero-rule base-
line that predicts that all future eruption VEI will be the 
most frequent VEI in the population. For instance for 
populations that include VEI ≥ 0, VEI ≥ 1 or VEI ≥ 2, the 
most common VEI is 2 and thus the zero-rule baseline is 
VEI = 2 for these datasets.

We then report the overall accuracy and gain relative to 
the baseline cases for the full dataset as well as all of the 
data subsets. As will be seen below, the gains are more 
meaningful since both baselines perform relatively well in 
terms of total accuracy.

Machine Learning‑Based Forecasts
Volcanoes include both categorical and numeric data that 
could potentially be helpful for VEI prediction and thus 

Table 1  Model Attributes. Attributes used for prediction. Type of attribute can be “Cat” for Categorical or “Num” for Numeric. For 
categorical data, the number of unique classes are listed for each attribute. To provide context on relative data size, the number of 
values (N) available for the post-1500 VEI ≥ 0 dataset are provided. This is an example dataset and the number of values available for 
the other dataset can be read from the white numbers in the bar graphs of Figs. 1–2

Attribute Type Number of 
classes

Models Using Attribute N in post-1500 historied 
VEI ≥ 0 dataset

N in post-1500 
unhistoried VEI ≥ 0 
dataset

Intrinsic Predictors

  Dominant Rock Type Cat 10 All Attributes
Categorical Data
Dominant Rock Type

424 133

  Morphology Cat 6 All Attributes
Categorical Data
Morphology

431 145

  Tectonic Setting Cat 10 All Attributes
Categorical Data
Tectonic Setting

431 145

Additional History Predictors

  Repose Time Num N/A All Attributes
All Numeric Data
Repose Time

321 N/A

  Eruption Duration (previ-
ous eruption)

Num N/A All Attributes
All Numeric Data
Eruption Duration

281 N/A

Simple Predictors

  Last VEI Num N/A All Attributes
All Numeric Data
Last VEI

431 N/A

  Median VEI Num N/A All Attributes
All Numeric Data
Median VEI

431 N/A

  Mode VEI Num N/A All Attributes
All Numeric Data
Mode VEI

431 N/A

  Minimum VEI Num N/A All Attributes
All Numeric Data
Minimum VEI

431 N/A

  Maximum VEI Num N/A All Attributes
All Numeric Data
Maximum VEI

431 N/A

Table 2  Condensed Morphology. The submorphologies on 
the right are all condensed into the general heading on the left 
column for analysis following Pesicek et al. (2021)

General Morphology Sub Morphology

Stratovolcano Complex Compound
Lava Cone
Lava Dome

Field Volcano Cone
Crater Row
Explosive Cater
Maar
Pyroclastic Cone
Tuff Cone
Tuff Ring
Volcanic Field

Shield Volcano Fissure Vent

Caldera Pyroclastic Shield
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a fairly general classification method might be useful. A 
random forest is a natural choice for a multiclass prob-
lem (Hastie et  al, 2017). The algorithm finds an ensem-
ble of decision trees. Each tree deterministically selects a 
VEI class by splitting the data based on the values of the 
predictor attributes. The random forest algorithm then 
uses a voting method to combine the classifications of 
the ensemble of trees and determine the predicted VEI 
of a given volcano. We use Matlab’s implementation of 
the random forest through the classification ensemble 
learner and optimize the hyperparameters of method, 
learning cycles and learning rates (See Github repository 
for full code: https://​github.​com/​eebro​dsky/​VEI-​Predi​ct.​
git). Before selecting the random forest approach, we also 
investigated alternative machine learning classifiers such 
as support vector machines (SVMs), naive Bayes and 
nearest neighbor algorithms. All algorithms performed 
nearly identically on this dataset and we confine our-
selves to presenting the random forest results for brevity. 
We make no claims about having found the optimal clas-
sifier method and future work may indeed find an even 
better method than utilized here.

We trained the random forest on each of the datasets 
and report fivefold cross-validation estimates of gener-
alization accuracy to guard against overfitting (Hastie 
et al. 2017). Because the goal of this study is to compare 
the predictive skill with various combinations of attrib-
utes rather than to determine the optimal prediction, 
we trained separate models for each individual attribute 
and as well as some combinations of attributes. The All 
Attributes model contains all available attributes. The 
Categorical Data model uses the tectonic setting, domi-
nant petrology, and morphology of each volcano and 
can be viewed as a grouping that only includes intrinsic 
attributes without any parameterization of eruptive his-
tory. The All Numerical Attributes model uses all of the 
VEI statistics used by the simple prediction models as 
well as repose time and eruption duration.

Covariance between attributes clearly exists. For 
instance, we would expect morphology and petrology to 
be related. Because of such covariance, the performance 
of the models is interpreted strictly empirically rather 
than physically. We report the accuracy of the trained 
model on the historied volcano dataset and then subse-
quently test the model on the unhistoried volcanoes.

The unhistoried volcanoes are not used in the training 
process and thus provide an out-of-sample test. For the 
intrinsic attributes that are available regardless of history, 
the unhistoried volcanoes are likely the best measure of 
performance. However, there is the possibility that the 
unhistoried volcanoes may have other biases since they 
are preferentially volcanoes that erupt less frequently or 
have poorer quality information.

Results
Figure  1a shows the cross-validated accuracy gain rela-
tive to a cohort prediction for every forecast scheme con-
sidered for all different subsamples of VEI for the most 
robust period of data, i.e., after 1500 AD. The results 
show that nearly every approach on every subset does 
better than the random sampling baseline. The implica-
tion is that using global trends of common behavior for 
similar types of volcanoes or merely assuming consistent 
behavior with the past is a rational approach that pro-
vides a ~ 10–30 percentage point accuracy gain depend-
ing on the subset of VEI considered. The clearest outlier 
is the maximum VEI predictor. Forecasting the next VEI 
to be equal to the maximum of the previously recorded 
VEI may be an appropriately conservative choice from a 
mitigation standpoint, but is unsurprisingly a poor pre-
dictor since the VEI distribution is weighted towards 
smaller eruptions. 

For most subsets of the data, the random forest per-
formed as well as the simple predictors. In a few cases, 
the random forest significantly outperformed the other 
metrics. For instance, the random forest performs bet-
ter for the datasets limited to high VEIs. For these small 
datasets with the highest threshold VEI the training 
process seems to be extracting useful information from 
the attributes of the volcano beyond the information 
encoded in the eruptive history.

Another view of the accuracy comes from the unhis-
toried volcanoes that were reserved for testing (Fig. 1b) 
which have a maximum accuracy gain of just over 15 
percentage points. These gains on the test set in Fig. 1b 
are similar to the cross-validation accuracy for the same 
models in Fig.  1a and thus provide confidence that the 
gains in Fig.  1a should generalize beyond the training 
dataset. It is also worth noting that each model in Fig. 1b 
has similar accuracy gains for all populations. We infer 
that using the intrinsic characteristics of volcanoes for 
VEI predictions performs generally similarly over all the 
VEI thresholds.

The total accuracy of VEI forecasts ranges 
from ~ 20–75% (Fig.  1c), with most approaches yield-
ing ~ 40–70% accurate forecasts. There exists an increase 
in the total accuracy with increasing VEI, which should 
be expected because increasing the minimum VEI con-
sidered reduces the number of possible VEI categories 
in the dataset. Even a random prediction with a small 
number of VEI values will be more accurate than one 
that has more options. In addition, catalog completeness 
likely increases with VEI, thus improving the data quality. 
Potentially the most complete group is the VEI ≥ 2 subset 
which has a total accuracy of ~ 70% for most approaches 
with gains of ~ 15 percentage points for either the simple 
predictions or the random forest. In general, it should be 

https://github.com/eebrodsky/VEI-Predict.git
https://github.com/eebrodsky/VEI-Predict.git
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possible to have a long-term forecast of the VEI of the 
next eruption with these confidence levels, even in the 
absence of more detailed studies on a particular volcanic 
system.

The results are reinforced by probing the entire Holo-
cene eruption catalog (Fig. 2). The highest accuracy gains 
of 30 percentage points were achieved for the VEI ≠ 2 
group using composite models including multiple attrib-
utes (All Attributes or All Numeric) and the simple 
predictor of the last VEI. In general, the random forest 

accuracy gain for the entire Holocene is slightly better 
than for the dataset limited to post-1500. Most notably 
repose time, which provides very little accuracy gain for 
the post-1500 eruptions has a greater accuracy gain for 
the whole Holocene dataset.

The zero-rule usually outperforms the cohort predic-
tion and thus the accuracy gains relative to the zero-rule 
are smaller (Figs. 3–4). For several of the random forest 
models, the algorithm recreated the zero-rule procedure 
as can be seen by the lack of an accuracy gain relative to 

Fig. 1  Performance of forecasting models from 1500 through February 2019 for each VEI data subset (see legend). (A) Accuracy gain of historied 
volcanoes relative to cohort baseline accuracy. Forecasting accuracy is estimated based on fivefold cross-validation. Small white numbers are the 
total number of volcanoes (N) in each dataset. Error bars are 1 standard deviation of cohort baseline accuracy based resampling (see text), which 
maps directly into error on accuracy gain. Downward arrows indicate negative accuracy gains, i.e., an ineffective prediction method. (B) Accuracy 
gain relative to cohort baseline on the unhistoried volcanoes. This dataset cannot be used for attributes that demand a history of VEI, such as the 
simple statistical predictions. Error bars are 1 standard deviation of cohort baseline accuracy. (C) Total accuracy of all models as estimated by fivefold 
cross-validation
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Fig. 2  Performance of forecasting models for the Holocene for each VEI data subset (see legend). (A) Accuracy gain of historied volcanoes relative 
to cohort baseline accuracy. Forecasting accuracy is estimated based on fivefold cross-validation. Small white numbers are the total number of 
volcanoes (N) in each dataset. Error bars are 1 standard deviation of cohort baseline accuracy based resampling (see text), which maps directly 
into error on accuracy gain. Downward arrows indicate negative accuracy gains, i.e., an ineffective prediction method. (B) Accuracy gain relative 
to cohort baseline on the unhistoried volcanoes. This dataset cannot be used for attributes that demand a history of VEI, such as the simple 
statistical predictions. Error bars are 1 standard deviation of cohort baseline accuracy. (C) Estimated total accuracy of all models based on fivefold 
cross-validation
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the zero-rule in Figs.  3–4. The implication is that fairly 
good predictions can be achieved by simply predicting 
that the next eruption at a given volcano will be the most 
common VEI in the global dataset. Note that this proce-
dure is distinct from predicting the modal VEI for a given 
volcano, which can perform differently (Fig. 3a, 4a). Only 
certain procedures on certain datasets outperform the 
zero-rule baseline. The composite models (All Attributes 

and All Numeric) can provide accuracy gains of up to 
20 percentage points on the VEI ≠ 2 dataset. The per-
formance on the unhistoried eruptions shows a modest 
predictive power of around 5 percentage points for the 
intrinsic attributes. However, the zero-rule is seldom out-
performed for datasets limited to the largest eruptions 
(VEI ≥ 3). In fact, the simple predictors do much worse 
than the zero-rule for these datasets and practitioners 

Fig. 3  Accuracy Gains relative to Zero-Rule baseline. Performance of forecasting models after 1500 for each VEI data subset (see legend). Apparently 
missing bars have no accuracy gain relative to the zero-rule. (A) Accuracy gain of historied volcanoes relative to zero-rule baseline calculated based 
on the modal VEI for each dataset. Forecasting accuracy is estimated based on fivefold cross-validation. Small white numbers are the total number 
of volcanoes (N) in each dataset. (B) Accuracy gain relative to zero-rule baseline on the unhistoried volcanoes. This dataset cannot be used for 
attributes that demand a history of VEI, such as the simple statistical predictions
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would be well-advised to simply use the global modes 
rather than volcano-specific information if only large 
eruption data is available.

Lastly, we probed to determine if any particular type of 
volcano was better forecast than the others by examining 
the distribution of intrinsic attributes in the successful 
forecasts compared to the full dataset. For instance, for 
the All Categories model, Fig.  5 shows the distribution 

of morphologies for volcanoes in the training set of the 
VEI ≠ 2 post-1500 which were predicted correctly. Fig-
ure 5 also shows the distribution of morphologies in the 
full dataset. There is no obvious difference in the distri-
bution and thus we conclude that there is no obvious 
preference for accurate predictions of certain volcano 
morphologies. Similar null results were found for tec-
tonic setting, dominant petrology, and other attributes.

Fig. 4  Accuracy Gains relative to Zero-Rule baseline. Performance of forecasting models from the Holocene for each VEI data subset (see legend). 
Apparently missing bars have no accuracy gain relative to the zero-rule. (A) Accuracy gain of historied volcanoes relative to zero-rule baseline 
calculated based on the modal VEI for each dataset. Forecasting accuracy is estimated based on fivefold cross-validation. Small white numbers are 
the total number of volcanoes (N) in each dataset. (B) Accuracy gain relative to zero-rule baseline on the unhistoried volcanoes. This dataset cannot 
be used for attributes that demand a history of VEI, such as the simple statistical predictions
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Caveats
This study is limited by design to the uniformly reported 
global database as available in 2019. The global database 
is limited in both the number of eruptions and attributes 
available. In the future, an increase in the collection and 
observation of volcanic eruptions of all VEIs is critical to 
establishing under what circumstances (if any) a greater 
level of predictability can be achieved. Machine learning 
algorithms require large datasets so it might be expected 
that this approach will become better constrained as the 
global database improves.

It is also worth noting that the focus of this study is on 
a conditional probability, i.e., we are studying the VEI of 
the next eruption assuming that the eruption happens. 
This is distinct from efforts to predict the timing of the 
next eruption.

Future work should address the clear skew in the distri-
bution of volcanic eruptions of VEI 2. The VEI  = 2 group 
was designed to eliminate eruptions that merely had a 
default value applied with insufficient data. The results in 
Figs.  1a and 2a clearly show that when VEI 2 eruptions 
have been removed there is an increase in accuracy gain 
in several models. Using VEI 2 as for under-documented 
explosive eruptions seems to have obscured some oth-
erwise quantifiable trends in the data. Of course, this 
procedure eliminates many true VEI 2 eruptions and 
refinement would be helpful in future work.

There are some other differences across VEI-based sub-
sets worth noting. The statistical attributes have the high-
est accuracy gain of any single attribute predictor when 
including low VEI eruptions, however, for the higher 
VEI threshold models, the random forest performs bet-
ter. As discussed above, the total accuracy increases with 

the limited VEI datasets simply due to the small number 
of target classes and thus the decrease in accuracy gain 
may be to some extent an effect of the rather large base-
line accuracy of the null hypothesis (random prediction). 
However, the intrinsic properties of volcano models per-
form similarly for all subsets of the data and are not sub-
ject to such biases. Combining attributes gives the best 
performance.

Conclusions
The overarching question of this study is whether or not 
the size of the current eruption can be well-predicted 
from the global database. We conclude that the answer 
is yes. Nearly all models used in this study have a level of 
predictability of over 10 percentage point accuracy gain 
from the cohort baseline. The total accuracy was found to 
range from 30 to 80% across the VEI thresholds and the 
two time periods. Of the models that were used during 
this study, the random forest models perform as well or 
better than the simple prediction models. Multiple attrib-
ute models utilizing the random forest algorithm had the 
highest level of predictability. The All Attributes and All 
Numeric models have the highest accuracy gain with val-
ues of 30 percentage points above the cohort baseline and 
20 percentage points above the zero-rule baseline. There 
is no preference in forecasting based on volcano type. 
These trained models and the code generating them are 
now available on github (https://​github.​com/​eebro​dsky/​
VEI-​Predi​ct.​git) for practitioners to use as they endeavor 
to quantify forecasts on volcanoes that may or may not 
have instrumental monitoring or other indicators of their 
future behavior.

Fig. 5  Comparison of distribution of morphology. Left is the full dataset and right is the correctly forecasted volcanoes for an example dataset of 
VEI  = 2 post-1500. As discussed in the text, there is no obvious bias towards correctly forecasting the VEI of any particular type of volcano

https://github.com/eebrodsky/VEI-Predict.git
https://github.com/eebrodsky/VEI-Predict.git
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