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Abstract

In this work we couple the Metropolis-Hastings algorithm with the volcanic ash transport model Tephra2, and present
the coupled algorithm as a new method to estimate the Eruption Source Parameters of volcanic eruptions based on
mass per unit area or thickness measurements of tephra fall deposits. Outputs of the algorithm are presented as
sample posterior distributions for variables of interest. Basic elements in the algorithm and how to implement it are
introduced. Experiments are done with synthetic datasets. These experiments are designed to demonstrate that the
algorithm works from different perspectives, and to show how inputs affect its performance. Advantages of the
algorithm are that it has the ability to i) incorporate prior knowledge; ii) quantify the uncertainty; iii) capture
correlations between variables of interest in the estimated Eruption Source Parameters; and iv) no simplification is
assumed in sampling from the posterior probability distribution. A limitation is that some of the inputs need to be
specified subjectively, which is designed intentionally such that the full capacity of the Bayes’ rule can be explored by
users. How and why inputs of the algorithm affect its performance and how to specify them properly are explained
and listed. Correlation between variables of interest in the posterior distributions exists in many of our experiments.
They can be well-explained by the physics of tephra transport. We point out that in tephra deposit inversion, caution
is needed in attempting to estimate Eruption Source Parameters and wind direction and speed at each elevation
level, because this could be unnecessary or would increase the number of variables to be estimated, and these
variables could be highly correlated. The algorithm is applied to a mass per unit area dataset of the tephra deposit
from the 2011 Kirishima-Shinmoedake eruption. Simulation results from Tephra2 using posterior means from the
algorithm are consistent with field observations, suggesting that this approach reliably reconstructs Eruption Source
Parameters and wind conditions from deposits.
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Introduction
Quantifying Eruption Source Parameters (ESPs), such as
eruption plume height, eruption duration and variability,
and mass eruption rate or total eruption mass, is crit-
ical to studies of volcanic eruptions and their products
(Newhall and Self 1982; Carey and Sparks 1986; Pieri and
Baloga 1986; Armienti et al. 1988; Scarpati et al. 1993;
Mastin et al. 2009; Stohl et al. 2011; Pouget et al. 2013;
Madankan et al. 2014; Bear-Crozier et al. 2020). Know-
ing the values of ESPs helps reconstruct pre-historic and
unobserved eruptions, and provides information for the
characterization of potential future hazards (e.g., Suzuki
and et al (1983), Carey and Sparks (1986), Bursik et al.
(1992), Bursik et al. (1992), Bonadonna et al. (1998),
Sparks and Young (2002), Hildreth (2004), Bonadonna and
Houghton (2005), Mannen (2006), Neri et al. (2008), Jenk-
ins et al. (2008), Bonasia et al. (2010), Jenkins et al. (2012),
Bonadonna and Costa (2012), Bonadonna et al. (2015),
Bevilacqua et al. (2015), Engwell et al. (2015), Yang and
Bursik (2016), Bevilacqua et al. (2018), Yang et al. (2019),
and Biass et al. (2019)). ESPs are commonly estimated by
coupling field observations with expertise on the process
being analyzed. Such expertise could be in the form of
a quantitative or descriptive physical model, an empiri-
cal or semi-empirical relationship, or their combination.
Suzuki and et al (1983) proposed the first tephra trans-
port and deposition model. Different methods (which
include physical and semi-empirical models) have been
proposed to simulate and study the deposition of volcanic
ash (Carey and Sparks 1986; Bursik et al. 1992; Bursik
et al. 1992; Koyaguchi and Ohno 2001; Bursik 2001; Costa
et al. 2006; Jones et al. 2007; Folch et al. 2009; Bonadonna
et al. 2010; González-Mellado and De la Cruz-Reyna 2010;
Schwaiger et al. 2012; Suzuki and Koyaguchi 2013).
Estimating ESPs can be treated as an inverse problem

(e.g., Tarantola (2005) and Kaipio and Somersalo (2006)),
and requires the use of different statistical and engineer-
ing techniques (Suzuki and et al 1983; Carey and Sparks
1986; Bursik et al. 1992; Sparks et al. 1992; Mannen 2006;
Klawonn et al. 2012; Klawonn et al. 2014; Maeno et al.
2014; Biass et al. 2016; Poret et al. 2017; Koyaguchi et al.
2017; White et al. 2017; Yang et al. 2019; Mannen et al.
2020). Previous workers have presented different methods
to implement inversion to obtain ESPs from the char-
acteristics of tephra deposits, such as deposit thickness
and grain size. The simplex search algorithm, grid-search
method, matrix inversion with Tikhonov regularization,
and a regularized form of the Levenburg-Marquardt algo-
rithm have been proposed (Connor and Connor 2006;
Klawonn et al. 2012; Johnston et al. 2012; White et al.
2017; Moiseenko and Malik 2019; Mannen et al. 2020).
The efficiency and ability to characterize uncertainty
with various simplifications (such as those used to avoid
solving ill-posed problems) are the main concerns in

proposing these algorithms as alternatives to classical
inversion.
The challenges in estimating ESPs derive from their (1)

high-dimensionality (i.e., too many variables to be esti-
mated) and (2) limited field observations (e.g.,Green et al.
(2016)). Because of the ill-posedness of this inversion,
it is important to quantify the uncertainty in the pro-
cess of estimating ESPs such that we know how certain
or uncertain we are about our estimate. In addition, it
has been shown that ESPs influence model prediction
through interaction with other ESPs (Scollo et al. 2008;
Yang et al. 2020). In tephra inversion, such interactions
or coupling could potentially lead to correlated results,
i.e., estimated ESPs are correlated with one another, which
is not always taken into account, or studied in a sys-
tematic and statistically formal manner. Markov Chain
Monte Carlo (MCMC) methods have the ability to quan-
tify inherent uncertainty and address the presence of
correlation between variables of interest in the estimate.
In this work, we present and introduce an algorithm

that couples the Metropolis-Hastings (M-H) algorithm
(Hastings 1970), one of the most widely-used MCMC
methods, with volcanic ash transport and deposition
model Tephra2 (Bonadonna et al. 2010; Connor et al.
2011) for the estimation of ESPs of explosive volcanic
eruptions. Advantages in using MCMC methods to esti-
mate ESPs under a Bayesian framework include (1) the
estimation can be denoted as a posterior probability distri-
bution, which enables uncertainty quantification; (2) prior
knowledge on ESPs and field observations can be com-
bined in a statistically formal way to jointly determine
the result; (3) correlations among ESPs and between ESPs
and wind conditions can be captured by the algorithm in
the estimated result; and (4) no simplification is assumed
in sampling from the posterior probability distribution,
which guarantees that the results are fully Bayesian. Note
that these are not unique to the presented algorithm (e.g.,
White et al. (2017)). See following sections for comparison
between different tephra inversion methods.
Because of these advantages, the algorithm presented

herein has the potential to better differentiate and charac-
terize sources of uncertainty, and detect insensitive vari-
ables of interest in tephra inversion. Uncertainty always
exists in tephra inversion regardless of the method being
used. Given its constant presence, it is important and
better for us to be able to capture and quantify the uncer-
tainty in a statistically formal manner.
We introduce and demonstrate the algorithm in the fol-

lowing way. We introduce the physical model Tephra2
(Bonadonna et al. 2010; Connor et al. 2011) first.
We then briefly explain Bayes’ rule, which is what
the M-H algorithm (Hastings 1970) solves numerically.
An intuitive interpretation of the M-H algorithm is
given. Then we describe in detail the construction and
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implementation of the M-H algorithm and specific setups
of the presented algorithm. We apply the algorithm to
simulated (synthetic) datasets, i.e., datasets generated
from Tephra2 with known ESPs and wind conditions, to
validate the algorithm. Three sets of experiments are done
with different purposes. Note that the experiments are
done to demonstrate that the algorithm is constructed
properly for Tephra2. There is no need to demonstrate
the validity of Bayes’ rule or the M-H algorithm as they
are well-studied and known to work well in inversion
problems (e.g., Hastings (1970) and Berger (2013))
In the discussion section, main advantages and limita-

tions of the algorithm are pointed out. Correlation in the
posterior distribution between variables of interest in our
experiments is explained by the physics of tephra trans-
port.Whether a simplified wind profile should be adopted
in tephra inversion is discussed.We apply the algorithm to
a dataset consisting of observed mass per unit area data of
the tephra deposit from the well-studied 2011 Kirishima-
Shinmoedake eruption to estimate its ESPs. The results
are in general consistent with observations and estimates
from previous studies.
The algorithm is coded in python scripts, and is

published on vhub (https://vhub.org/resources/4614). To
make the work accessible to a broad audience, we min-
imize the use of mathematical and statistical terms in
introducing Bayes’ rule and the M-H algorithm. We hope
that the algorithm can benefit researchers with interest
in estimating ESPs of volcanic eruptions regardless of
their backgrounds, and the text can serve as a tutorial to
potential users.

Volcanic ash transport model Tephra2
Tephra2 is a widely-used volcanic ash transport and
deposition model (Bonadonna et al. 2010; Connor et al.
2011). It has been coupled with different statistical and
engineering techniques for forward and inverse model-
ing of tephra fall deposits and volcanic hazard analysis
(Connor and Connor 2006; Mannen 2006; Volentik et al.
2010; Fontijn et al. 2011; Biass et al. 2012; Mannen 2014;
Magill et al. 2015; Biass et al. 2016; Biass et al. 2017;
Takarada 2017; Wild et al. 2019; Connor et al. 2019; Man-
nen et al. 2020; Williams et al. 2020). Tephra2 assumes
that tephra particles with different grain sizes are released
from a vertical column with column radius increasing
with height (accounted for by an additional diffusion term;
Suzuki and et al (1983)), and their transport is subject to
wind advection, horizontal turbulent diffusion, and falling
at terminal velocities. Inputs of Tephra2 include total
eruption mass and total grain size distribution, and other
parameters to characterize the eruptive column and wind
conditions.
Tephra2 gives semi-analytical solution to the advection-

diffusion equation, and its output is the tephra mass

per unit area deposited and grain size distribution at
user-specified locations. Tephra2 assigns the total erupted
mass M0 to grain size bins (in φ unit) based on the spec-
ified grain size distribution. The total mass for each grain
size is distributed along the eruptive column (discretized
to points). The mass distribution is described by a beta
probability density function characterized by α and β .
When tephra particles with grain size φj released at the

height of Hi (their total mass: Mi,j) settle and deposit on
the ground, the corresponding spatial distribution of mass
per unit area (mi,j(x, y)) of the deposit is proportional to a
2D Gaussian function, and can be written as:

mi,j(x, y) = Mi,jfi,j(x, y), (1)

where (x, y) is the spatial coordinates, and fi,j(x, y) is the
2D Gaussian function with its mean and variance depend-
ing on the grain size j, released elevation Hi, wind speed
and direction, and parameters that characterize turbulent
diffusion (e.g., turbulent diffusion coefficient). The total
mass per unit area at (x, y) is the sum of Eq. 1 for all
particle sizes released from the eruptive column. As the
eruptive column, a line source, is discretized into many
point sources in Tephra2, the total mass per unit area can
be written as:

m(x, y) =
Hmax∑

i=0

φmax∑

j=φmin

Mi,jfi,j(x, y). (2)

To run Tephra2, ESPs, wind conditions, and locations
of interest need to be specified. Tephra2 discretizes the
atmosphere into multiple horizontal layers. The number
of horizontal layers and their elevations as well as the cor-
responding wind speeds and directions need to be speci-
fied as wind conditions by users to run Tephra2. See more
information on the use and implementation of Tephra2 in
Connor et al. (2011), Mannen (2014), and Connor et al.
(2019).

Inversion technique
Bayes’ rule
Simply put, Bayes’ rule states that our prior knowledge
about certain quantities of interest can be updated based
on new observations. Assuming that the quantities of
interest (i.e., ESPs in this study) is a vector x, the prior
knowledge on its value can be denoted as a prior probabil-
ity distribution P(x). Here the prior distributions should
be specified in a way such that they truthfully reflect how
certain, or equivalently, how uncertain we are about the
values of variables to be estimated. Discussions on the
Bayes’ rule and how to properly specify the priors could
become either too abstract or technical, and are too broad
to be within the scope of this work. Philosophical, com-
prehensive, and detailed discussions on Bayesian statistics
can be found in Berger (2013).

https://vhub.org/resources/4614
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With a series of observations θ (i.e., mass per unit area
of tephra deposit on the ground in this study), our under-
standing on x could be updated, which is denoted by the
posterior probability distribution (P(x|θ)). Bayes’ rule is
written as:

P(x|θ) = P(θ |x) · P(x)
P(θ)

, (3)

where P(θ |x) is the likelihood function. It denotes the
probability of observing θ given x. P(θ) is the evidence
P(θ) = ∫

P(θ |x)P(x)dx, and is the total probability of
the observations. Here we refer to probability density as
probability for convenience.
We can assimilate new observations (e.g. tephra obser-

vations) to obtain the posterior distribution with the help
of the likelihood function. In our case, this cannot be done
without running the model Tephra2. We use the simplest
case with only one variable of interest unknown, say col-
umn height, and one mass per unit area observation (θ∗)
to explain the likelihood function. We could apply one
value of column height (h∗) to Tephra2, and collect the
corresponding output d(x = h∗) with d(·) denoting the
Tephra2 output (assume one location of interest in this
example). Neglecting model uncertainty, knowing x = h∗
is equivalent of knowing d(x = h∗). Further assuming that
the likelihood function follows a Gaussian distribution, its
mean value could be d(x = h∗), and its variance needs
to be determined based on our understanding of the data
(e.g., the variance should scale with measurement uncer-
tainty; see (Kawabata et al. 2013; Green et al. 2016) for
more information on selecting the likelihood function).
If the true column height that generates θ∗ is 10 km, we

expect to see the likelihood function having a greater value
if h∗ is closer to 10 km—the probability of observing θ∗
is greater when h∗ is closer to 10 km. In general, the like-
lihood function should have a greater value, if the model
output is similar to the observation. This is also why a
Gaussian distribution centered at the model output can be
used as one form of the likelihood function. The scale of
the likelihood function, which is standard deviation in this
example, reflects the scale of measurement uncertainty in
the present context. If multiple observations are made, by
assuming that each observation is made independently,
the likelihood function could be the product of likelihood
function for each observation (as adopted in this work).
Here it should be noted that with multiple observations,
each observation could have different (assumed)measure-
ment uncertainty (e.g., measured thicknesses of tephra
deposits from sediment cores and on land could have
different measurement uncertainty; when implementing
the inversion based on the amount of each grain size,
measured amount of each grain size could have various
level of measurement uncertainty). This would change the
shape of the likelihood function, and additional attention

is needed when constructing the likelihood function in
such cases. This is not considered in the present work, but
could be adjusted in the algorithm based on specific needs
of users.
Constructing the likelihood function properly requires

our knowledge on the observation dataset, and the form
of the likelihood function could vary case by case. See
(Kawabata et al. 2013; Green et al. 2016; Engwell et al.
2013) for more detailed discussion on how to select the
form of the likelihood function properly and how to quan-
tify measurement uncertainty of tephra fall deposits.
To obtain the posterior probability distribution, we need

P(x), P(θ), and the likelihood function P(θ |x). The prior
distribution P(x), the likelihood function P(θ |x), and P(θ)

(by definition) need to be defined beforehand based on
prior knowledge about the ESPs and measurement uncer-
tainty.
The major difficulty in analytically deriving the poste-

rior distribution comes from the fact that the likelihood
function would become almost certainly non-parametric
in practice. This would make the value of P(θ) hard to cal-
culate (although it is a constant), and is related to practical
issues such as the high dimensionality of the parameter
space. Therefore, the posterior distribution is frequently
obtained through numerical sampling methods.

The M-H algorithm
MCMC methods, a class of methods that draw samples
from a target distribution, can be used to sample from the
posterior distribution based on P(θ |x)P(x), the numerator
of the right-hand side of Eq. 3. In this way, the diffi-
culty in calculating P(θ) can be avoided. In volcanology,
MCMC methods have been widely adopted for various
purposes, such as estimating parameters and initial con-
ditions of a physical model (which is similar to the goal
of the present work), determining ages of volcanic events,
and hazard forecasting (e.g., Green et al. (2016), Ander-
son et al. (2019), Covey et al. (2019), Lev et al. (2019),
Jenkins et al. (2019), Wang et al. (2020), and Liang and
Dunham (2020)). (Green et al. 2016) used one MCMC
method to estimate volumes of tephra fall deposits based
on sparse and incomplete observations, and their work
used a semi-empirical model to characterize tephra thick-
ness distribution.
The procedure adopted in this work, the M-H algo-

rithm, is one of the most widely used MCMC methods
(Hastings 1970). A brief introduction to the algorithm is
given below.More information about the algorithm can be
found in textbooks and published articles (e.g., Chib and
Greenberg (1995), Andrieu et al. (2003), and Kaipio and
Somersalo (2006)).
The M-H algorithm draws a series of sample points

following certain rules. Each sample point corresponds
to one set of ESPs and wind conditions (one value for
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each variable) that are to be estimated. These rules are
determined by the prior distribution and the likelihood
function. With sufficient draws, it is guaranteed that the
distribution of the drawn samples converges or approxi-
mates the target probability distribution, namely the pos-
terior distribution in our case, regardless of the starting
sample point. How the algorithm works can be generally
described as follow.
With a random starting point x0 (i.e., the first sample)

and corresponding observations θ , the algorithm pro-
poses a new point x∗

1 using a proposal function that is
known and easy to sample. In this work, we use one of
its most common forms, a Gaussian probability density
function centered at the previous point (i.e., x0 for the
first draw). The variance of the proposal function needs
to be defined subjectively which will affect the efficiency
of the M-H algorithm, and will be illustrated in later
experiments. Proposing a new point x∗

1 is thus equiva-
lent of drawing one sample from a Gaussian probability
distribution.
By calculating and comparing P(θ |x0)P(x0) with

P(θ |x∗
1)P(x∗

1), the algorithm decides whether to accept or
reject x∗

1. Note that we need to know values of the prior
(P(x0) and P(x∗

1)) and likelihood function (P(θ |x0) and
P(θ |x∗

1)) to do the comparison. The latter requires us
to implement Tephra2 to obtain values of the likelihood
function.
If x∗

1 is rejected (the rejection rule is introduced in the
next paragraph), x1 = x0. Otherwise, x1 = x∗

1. The
two procedures, namely drawing a new sample point and
rejecting or accepting it, iterate, and after sufficient iter-
ations, a chain of vectors x0, x1, ..., xn is obtained. By
(1) excluding points with relatively small index (e.g., x0,..,
x499), and (2) taking points with a fixed interval along the
chain (e.g., only taking x500, x600, ..,x9900 , x10000), the tar-
get posterior distribution is obtained through sampling.
The first measure is to make sure that the results are not
affected by the value of the starting point (x0), and the sec-
ond is to avoid auto-correlation in the chain (see Chib and
Greenberg (1995), Andrieu et al. (2003), and Kaipio and
Somersalo (2006) for more details).
Whether to accept or reject a proposed point follows the

rules below:

• If P(θ |x∗
1)P(x∗

1) > P(θ |x0)P(x0), then the posterior
probability is greater at x∗

1, and the proposed point
will be accepted. That is, if the proposal has a higher
posterior probability it is automatically accepted.
Following this rule ensures that there will be more
samples with greater posterior probability in the
chain.

• If P(θ |x∗
1)P(x∗

1) < P(θ |x0)P(x0), then the algorithm
accepts x∗

1 with probability
P(θ |x∗

1)P(x∗
1)/P(θ |x0)P(x0). This allows the

algorithm to occasionally sample points with low or
relatively low posterior probability, in order to
explore the entire possible domain of x. Following
this rule implies that:

– If P(θ |x∗
1)P(x∗

1) is a lot smaller than
P(θ |x0)P(x0), the posterior probability at x∗

1 is
small, and should be accepted with low
probability. This ensures that there will be
fewer points with low posterior probability in
the chain.

– If P(θ |x∗
1)P(x∗

1) is only slightly smaller than
P(θ |x0)P(x0), the probability of accepting x∗

1 is
relatively greater. In such a case, the algorithm
encourages (with high probability of
acceptance) keeping x∗

1 and further exploring
points around (sharing similar values with) x∗

1.

The second rule is critical to the M-H algorithm. Instead
of searching for the values that maximize the poste-
rior probability (maximum a posteriori estimation), the
algorithm functions through sampling from the target
distribution.

Specific setup and running the algorithm
Form of the likelihood function
In the present version of the algorithm, it is assumed
that the likelihood function for each observation follows
a Gaussian distribution with variable log10(

observation
model output ).

The mean of the distribution centers at 0 such that the
likelihood function peaks when the observation is iden-
tical to the model output. This setup is consistent with
previous works. It states that measurement uncertainty
scales with magnitude of the observation (e.g., Connor
and Connor (2006), Kawabata et al. (2013), and White
et al. (2017)). The standard deviation or scale of the
likelihood function, which reflects measurement uncer-
tainty, needs to be specified by users. Its effect on the
results of the algorithm will be examined in the following
experiments. It should be noted that the form of the likeli-
hood function could be changed to different forms in the
algorithm.

Two ways to specify the wind profile
The algorithm allows for two ways to specify and estimate
the wind profile, and users could decide which way to use,
and how to construct the parameterization (i.e., determine
what variables are known, and what are to be estimated
for the wind profile). In cases with limited observations,
it is challenging to estimate the wind speed and direction
at each elevation (see White et al. (2017) for successful
examples). In such cases, a simplified form of the wind
profile can be adopted in the algorithm. It assumes that (1)
the wind direction is constant, and does not change with
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elevation, and (2) wind speed increases from zero to a cer-
tain (a maximum wind speed) value with elevation, and
then decreases to zero with elevation linearly. Four vari-
ables define such a simplified wind profile. They are the
wind direction, maximum wind speed, elevation that cor-
responds to the maximum wind speed, and elevation that
the wind speed reaches zero. Users could specify which of
the four variables are to be estimated. Prior distributions
of these variables also need to be specified if they are to be
estimated. This wind profile setup is similar to the wind
speed profile adopted by Carey and Sparks (1986).
In the second way to specify the wind profile, users

could determine whether wind speed and direction at
each elevation level are known (i.e., do not need to
be estimated and kept fixed in implementing the algo-
rithm) or not (i.e., need to be estimated). If the wind
speed and direction at certain or all elevation levels
need to be estimated, users need to specify the prior
for each of these variables. For recent eruptions, users
could adopt best-fit historically observed wind profiles,
or use them to construct the priors for wind conditions
with the non-simplified wind profile. For example, NOAA
NCEP/NCAR REANALYSIS data (Kalnay et al. 1996) pro-
vide a large number of wind profiles globally, based on
best-fit wind profiles to observations via weather models
(e.g., Connor et al. (2019) and Mannen et al. (2020)).

Running the algorithm
To run the algorithm, users first need to prepare input
files. Examples of input files can be found in Table 1. They
have five columns including the “variable name” column.
The “initial value” column specifies the starting value of
each variable. If the value of one certain variable is known
(not to be estimated), its initial value will be fixed dur-
ing the implementation of the algorithm, and the “prior”
column needs to be marked as “Fixed”. For such variables,

users could leave the last three columns blank. To esti-
mate a non-simplified wind profile, users must specify the
wind direction and speed at the specified elevation levels,
depending on the form of the assumed profile.
For variables to be estimated, their initial values do not

affect the results as long as the specified number of draws
is sufficiently large. The only requirements for the ini-
tial values are that they need to be physically possible,
and their values would not lead to an error when run-
ning Tephra2. In practice, having the initial values located
within a meaningful region (for example, means of the
prior distributions) could effectively avoid exploring (sam-
pling) values that are less likely to be accepted. Forms of
prior distributions for these variables need to be defined
in the “prior” column. The current version of the algo-
rithm supports “Gaussian” and “Uniform” distributions.
Including more forms (e.g., log-normal distribution and
bounded Gaussian distribution) of the prior distribution
in the algorithm will be one goal of our future work for its
improvement. If the former is specified, columns “param-
eter_a” and “parameter_b” should be filled with the mean
and standard deviation of the prior distribution, respec-
tively. Otherwise, the two columns correspond to the
minimum and maximum of the uniform prior distribu-
tion. The last column “draw_scale” specifies the standard
deviation of the proposal function for each variable to be
estimated.
After the input files are prepared, users need to run all

python scripts in order to execute the algorithm. Other
than setting up proper file paths to read input files and
observed data, and store the results, users only need to
specify two values, namely the scale of the likelihood func-
tion and the number of draws (length of the chain), to run
the algorithm. How to determine the number of draws
is universally challenging when working with MCMC
methods. It is preferred to have a large number of draws

Table 1 Examples of input files of the algorithm. Tables on the left and right correspond to input files that specify the ESPs and
simplified wind profile, respectively
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so that measures can be done to reduce autocorrelation
in the sampled chain (e.g., leave out samples at the begin-
ning of the chain and taking samples along the chain with
a fixed interval as the final sample distribution; see (Chib
and Greenberg 1995; Andrieu et al. 2003; Kaipio and Som-
ersalo 2006) for more details), and the results are less
likely to be divergent. Here we recommend the number
of draws to be ranging from five thousand to one million.
This is based on our experiments with the algorithm. The
basic principle is that more number of draws are neces-
sary if more variables are to be estimated. This is because
with more variables to be estimated, the dimensionality
of the input space increases, and more draws are needed
to explore the input space (i.e., a lot more possible com-
binations of input variable values need to be explored).
One million draws are indeed not trivial, but given the low
computational cost, having one million runs with Tephra2
is not impractical.
Users could check for convergence by running two or

more separate runs with identical inputs except for the
starting values. If sample distributions from the runs are
similar to each other, results from them converge. Oth-
erwise, users need to increase the number of draws, and
run the algorithm and check again following the same pro-
cedure. See (Andrieu et al. 2003) and references within
for more information on how to implement the M-H
algorithm properly.
The primary output from the algorithm is the sampled

chain. If 10000 draws are specified, the sampled chain
will be a 10000-by-23 (19 variables for the ESPs plus 4
variables for the wind profile) matrix if a simplified wind
profile is adopted. Otherwise, with the non-simplified
wind profile scenario, the result will be presented as three
separate matrices for the eruptive column (10000-by-19
matrix) and wind speed and direction at each eleva-
tion (two 10000-by-40 matrices if the specified elevations
are 1000, 2000,...,40000 m), respectively. Variables with
known and fixed values will remain constant in the corre-
sponding columns.
The algorithm also produces the log-transformed val-

ues of the prior probability and likelihood function of the
proposed samples at each draw, log-transformed poste-
rior probability for each accepted sample on the chain, and
the number of acceptances from the run as outputs. They
could potentially help users to debug and adjust parame-
ters to run the algorithm. The ESPs and wind conditions
with the highest posterior probability are mostly likely
to reproduce observations. Their values can be found
by examining histograms of resultant samples or finding
their medians.
The running time of the algorithm depends (roughly lin-

early based on our experiments) on the specified number
of draws, the running time of Tephra2, and the number
of observations. On an iMac with a 3 GHz Intel Core i5

processor, implementing the algorithm with ten thousand
draws and 30 observations takes 394 seconds (∼6.5 min-
utes). More details on how to implement the algorithm
can be found in the documentation file of the algorithm
on vhub (https://vhub.org/resources/4614; (Yang et al.
2020)).

Results
In this section, we generate simulation data usingTephra2.
The simulated data are treated as field measurements for
testing and validation of the algorithm. It should be noted
that the goal of this work is to present and validate this
algorithm and introduce and explain how it works. There
is no need to question Bayes’ rule and the adopted M-H
algorithm. We avoid using real thickness or mass per unit
area datasets of tephra fall deposits in testing the algo-
rithm. This would avoid additional sources of uncertainty
from affecting the results (e.g., model uncertainty and
variable level of post-eruption erosion and compaction of
tephra deposits).
It is difficult to validate the algorithm even with syn-

thetic datasets, because (1) outputs of the algorithm are
posterior probability distributions, not individual opti-
mum values. Because of this, it is difficult to tell that the
method works in a single experiment: it is perhaps easier
to tell whether the posterior mean is estimated correctly
or not, but how can we check for uncertainty? It is difficult
to calculate the posterior standard deviation analytically;
(2) in complex scenarios (i.e., a lot of variables are to be
estimated), it is possible that posterior distributions can-
not be updated from the priors. For example, when the
variable to be estimated is not sensitive to model output.
In such cases, the not-updated posterior distribution is the
right answer, because our prior knowledge on this vari-
able cannot be updated based on new observations; (3)
Whether the prior and posterior distributions are poorly-
or well-constrained is always relative, which depends on
numbers of observations and variables to be estimated
and measurement uncertainty.
Therefore, we think that comparison is key to demon-

strating the validity of the algorithm. By comparing
whether the posterior uncertainty changes accordingly
with the inputs and with expectations from Bayes’ rule,
we examine whether the posterior uncertainty is esti-
mated correctly. For example, if we increase the assumed
measurement error in an experiment, we would expect
to have a greater posterior uncertainty for the ESPs
to be estimated in the result. However, because of
the second difficulty in validating the algorithm listed
above, the comparison would only be significant and dis-
cernible in simple scenarios (i.e., fewer variables to be
estimated).
With these concerns, three sets of experiments are

done with different purposes. In the first two sets of

https://vhub.org/resources/4614
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experiments, the algorithm with the simplified wind pro-
file is adopted. The experiment in Set 3 works with the
non-simplified wind profile.
The first set of experiments is designed to test when

given different inputs, whether the resultant posterior dis-
tributions from the algorithm would behave consistently
with expectations from Bayes’ rule, and to illustrate how
specifications of inputs to the algorithm affect the results
(sampled posterior distributions). We thus intentionally
keep the scenarios in Set 1 experiments simple, i.e., esti-
mating column height and total eruption mass with ten
or thirty observations. In this way, we know how the
posterior distributions behave given different inputs (e.g.,
different data quality and priors) based on Bayes’ rule. In
these simplified scenarios, we exclude potential impacts
from the model (e.g., whether certain variable is sensitive
to the output or not) on the estimated posterior distribu-
tions. Therefore, albeit simplified, Set 1 experiments are
considered necessary and strict measures to demonstrate
that the algorithm is constructed properly. In these sim-
plified experiments, we also adjust the number of input
observations (dataset size) and sample site locations to
showcase that the algorithm behaves consistently with the
Bayes’ rule in different scenarios.
In Set 2 experiments, we estimate posterior distribu-

tions of eight variables with poorly-constrained priors
(except for column height as it is investigated in Set 1
experiments). These scenarios are more comparable to a
real-world problem of tephra inversion.
The experiment in Set 3 is done to show that (a) the

algorithm is able to estimate wind speeds and directions
at different elevations when the problem is known to be
solvable (with the non-simplified wind profile); and (b) the
estimation is not easy due to the number of variables to
be estimated (i.e., high dimensionality of the input space)

for the algorithm. Details and results of the three sets of
experiments are given below.

Set one experiments
Experiment setup
For Set 1, twelve experiments are done. We set column
height and total eruption mass as our variables of inter-
est, and their true values are 15000 m and 1.88 × 1011 kg
(25.96 = log(1.88 × 1011) log-transformed kg), respec-
tively. Here we use the natural logarithm, but it can be
easily adjusted in the present version of the algorithm
based on the need of its users. The choices would not
affect any results or conclusions in the following experi-
ments. Values of other ESPs and wind conditions used to
run Tephra2 to generate the “observations” are assumed
to be known (i.e., fixed values in the experiments) and
listed in Table 2, and are fixed in all experiments in Set 1.
The simplified wind profile is adopted throughout the 12
experiments. Given purposes of Set 1 experiments, focus-
ing on just two variables makes it easier for examining
and interpreting the results. The first experiment, Experi-
ment # 0, is used as reference for comparison with results
from the rest. For the rest experiments, we just modify
one input of the algorithm or the observation dataset, and
keep the others the same as they are in Experiment # 0.
In this way, the impact of each factor on the performance
of the algorithm can be isolated and highlighted. Specified
inputs of the 12 experiments as well as changes made in
each experiment are highlighted in Table 3.
For the 12 experiments, the M-H algorithm is set to

draw 10000 points (10001 points in the chain including
the starting point). After each experiment is finished, we
post-process the results by taking the first 1000 points
out of the chain, and collecting samples from the rest
of the chain by a 15-points interval (only taking 1015th,

Table 2 ESPs and wind conditions used to generate “field observations” for validation of the algorithm. ESPs for Sets 1 and 2
experiments with the simplified wind profile (orange-striped cells) and the Set 3 experiment with the non-simplified wind profile
(blue-striped cells), respectively
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Table 3 Specifications and input observation data used to run Experiments # 0-11 of Set 1. Differences in the specification or input
observation data in each experiment compared to Experiment # 0 (as reference experiment; marked as green cells) are highlighted in
yellow

1030th, ..., 10000th points in the chain) and discarding all
other points. These measures are adopted to prevent the
results from being affected by the initial starting point and
autocorrelation as mentioned earlier. For two variables of
interest, a chain with 10000 draws is sufficient enough
for the samples to converge to the posterior distribution.
Summary of the sampled posterior distributions is given
in Table 4.

Reference experiment
In Experiment # 0, ten observations are sampled at local-
ities far from the source vent downwind (∼ 14 − 30
km from the vent ; sample sites shown in Fig. 1a). Their
values range from 50-383 kg/m2. Gaussian distributions
are assumed for the column height and log-transformed
total eruption mass. Means and standard deviations are
16000 m and 2000 m for column height, and 25.96 and 2
log-transformed kg (1.88 × 1011 kg) for eruption mass. It
is noted that 16000 m is slightly greater than the specified

column height used to generate the dataset, and the prior
mean for the log-scaled eruption mass is identical to the
true value (Table 3). The scale of the likelihood function
is set to be 0.05, which corresponds to ∼ 11.6% of relative
measurement error (this can be calculated based on how
the likelihood function of the algorithm is defined; see text
above).
The results are shown and summarized in Table 4 and

Fig. 2. The posterior means for the column height and
log-scaled eruption mass are 15338 m and 25.928 log-
transformed kg, respectively, and the corresponding pos-
terior standard deviations (of the samples) are 1067 m
and 0.066 log-transformed kg. Both posterior means are
consistent with the true values, and the posterior stan-
dard deviations are smaller than those of the priors (2000
m and 2 log-transformed kg, respectively). The results
suggest that the algorithm works in this simplified case.
With ten observations and the presented algorithm, the
consistency between the posterior means and the true

Table 4 Summary of results from Set 1 Experiments # 0- 11
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Fig. 1 a: mass per unit area distribution used for the validation of Set 1 Experiments # 0-11 and sample site locations. White (larger), turquoise,
yellow, and pink dots are the sample site locations used for Experiments # 0-4, 5-9, 10, and 11, respectively. All sites shown in a are used in Set 2
experiments as sample site locations; b: mass per unit area distribution used for the experiment with the non-simplified wind profile. Small white
points correspond to sample site locations. Mass per unit area distributions in a and b are in different resolutions. This difference is only for easier
visualization (reducing the number of grid points to be plotted in b), and would not affect any arguments or conclusions from this work

values of column height and total eruption mass and the
reduced posterior standard deviations suggest that our
knowledge about the column height and total eruption
mass are correctly improved.

Effects from specifications required by them-H algorithm
Scale of the likelihood function In Experiment # 1, we
increase the scale of the likelihood function from 0.05
to 0.2 (Table 3), which corresponds to 53.4% of rela-
tive measurement error. A greater scale of the likelihood
function implies that a greater measurement uncertainty
is assumed (neglecting model uncertainty). From Bayes’
rule, we know that compared with results from the refer-
ence experiment, posterior distributions of Experiment #
1 would not be greatly updated.
As expected, the resulting sampled posterior distri-

bution of column height from Experiment # 1 is not
significantly different from its prior. Its posterior mean
and standard deviation are 15990 m and 1775 m, respec-
tively (prior mean and standard deviation: 16000 m and
2000 m). In this experiment, observations are made, but
because a larger measurement uncertainty is assumed for
them, the algorithm does not trust these measurements
as it does in the reference experiment. This is also man-
ifested in the acceptance rate of Experiment # 1, which
is 84.0%. What the M-H algorithm does here is basically
accepting or rejecting points based on the prior distribu-
tion, and the likelihood function cannot help determine
whether to accept or reject the proposed samples due
to the greater scale specified (i.e., greater measurement
uncertainty).
The posterior distribution of the log-transformed total

eruption mass still centers close to the true value
with lowered standard deviation compared to its prior,

suggesting that estimating total eruption mass is less sen-
sitive to measurement uncertainty. This is consistent with
the argument from (Scollo et al. 2008) which states that
total eruption mass is a crucial eruption parameter that
would greatly affect Tephra2 outputs by itself.

Scale of the proposal function In Experiment # 2,
scales of the proposal function are increased from 500
m and 0.05 log-transformed kg to 2000 m and 0.2 log-
transformed kg for column height and log-transformed
total eruption mass, respectively (Table 4). With greater
scales of the proposal functions, the algorithm is more
likely to propose a new point that is far from the current
point. We know from the theory of the M-H algorithm
that this would not affect the resultant sampled poste-
rior distributions. This is confirmed through comparing
results in Experiments # 0 and 2 which are similar to each
other (Table 4).
Nonetheless, scales of the proposal functions would

affect the efficiency of the algorithm and sometimes its
performance when the number of draws is not large
enough. The algorithm is being too “adventurous” with
proposal functions characterized by greater scales: they
tend to explore (propose) values that are greatly different
from the current point. Such values are less likely to be
accepted especially when the current values are character-
ized by high posterior probability (acceptance rate: 13.6%
for Experiment # 2). The greater probability of rejection
reduces the efficiency of the algorithm. Users could adopt
the suggested measures (introduced in previous section)
to check for convergence first. If the results converge,
there is no need to worry about the greater probability of
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Fig. 2 Selected posterior distributions of column height and log-scaled eruption mass. Results from Set 1 Experiments # 0, 1, 2, and 4 are shown in a
(column height) and c (log-scaled eruption mass), and results from Set 1 Experiments # 5, 6, 7, and 9 are shown in b (column height) and d
(log-scaled eruption mass). The blue dashed lines mark the true values of column height and log-transformed eruption mass used to generate the
observation data. The red solid lines correspond to prior distributions assumed for all experiments except for Set 1 Experiments # 4 and 9, and their
priors are denoted as red dashed lines

rejection. Otherwise, users could lower scales of the pro-
posal functions for the variables of interest to increase the
probability of acceptance, run the algorithm, and check for
convergence.

Prior distributions Experiments # 3 and 4 are designed
to test how prior distributions affect the posterior distri-
butions. The prior means of the column height are set
to be 14000 m and 12000 m with standard deviation of
500 m for both experiments respectively. The prior means

for the log-scale eruption mass are 23.66 log-transformed
kg, and the standard deviations are 0.5 log-transformed
kg in the two experiments. The prior means are differ-
ent from the true values of column height (15000 m) and
total eruption mass (25.96 log-transformed kg). In the two
experiments, we are incorrect (incorrect prior means) yet
confident (small standard deviations for the priors) in our
prior knowledge.
Based on Bayes’ rule, we know that with the overconfi-

dence in specifying the priors in Experiments # 3 and 4,
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the ten observations are probably not sufficient enough to
“drag” the posterior distributions to be centered at the true
values. We expect to see the posterior distributions of one
or both of the variables to be centered in between the true
values and means of the specified priors.
The results are consistent with this expectation, and

show that the ten observations are not powerful enough
to correct both priors in the two experiments. Posterior
means of the two experiments are 14283 and 12666 m
for the column height (std: 442 and 459 m), and 25.997
and 26.138 log-transformed kg for the log-scaled total
eruption mass (std: 0.048 and 0.059 log-transformed kg),
respectively. Experiment # 3 with the specified prior closer
to the true value has its posterior distribution of column
height closer to the true value compared to Experiment
# 4. The “incorrect” results in the two experiments rep-
resent what we expect to see based on Bayes’ rule, and
support the validity of the algorithm.
Posterior distributions of total eruption mass in both

experiments are centered near the true value of log-
transformed total eruption mass. This again is consistent
with the interpretation about the total eruptionmass from
(Scollo et al. 2008).

Number of input observations Experiments # 5- 9 share
the same specifications with Experiments # 0-4, respec-
tively, except that 20 more samples are included in the
input. The 30 measurements (see Fig. 1 for sample locali-
ties) range from 32-383 kg/m2. The results are compared
pairwise, and summarized in this section. With more
observations, we expect to see the posterior distributions
being improved (either with reduced uncertainty or the
posterior means closer to the true values) compared to
Experiments # 0-4 with fewer observations.
Comparison between Experiments # 0 and 5 shows that

they have similar posterior means that are consistent with
true values of column height and log-transformed total
eruption mass. The corresponding standard deviations
are smaller in Experiment # 5 (685 m and 0.039 log-
transformed kg for column height and log-scaled eruption
mass). This confirms that more observations reduce the
uncertainty in the posterior distribution. The same argu-
ment can be made for Experiment # 7 as it has the same
specifications as Experiment # 5 except for greater scales
of the proposal functions (which would not affect the
posterior distribution, and is discussed in Experiment #2).
Even with more observations, the posterior distribution

(mean: 15786 m; std: 1633 log-transformed kg) of column
height in Experiment # 6 (which assumes a greater mea-
surement error) is not greatly updated from the prior. This
is again due to the greater likelihood scale specified in
Experiment # 6. The assumed uncertainty in the measure-
ment is too large that 30 observations are not sufficient
enough to greatly update the prior.

Experiments # 8 and 9 with incorrect and confident pri-
ors have their column height posterior means (14483 and
13340 m) slightly closer to the true value compared to
results from Experiments # 3 and 4 (14283 and 12666 m).
Posterior means of log-transformed eruption mass in the
two experiments are close to the true values (25.986 and
26.070). It can be seen that more observations “drag” the
posterior distributions of column height towards the true
value in the two experiments. Results from experiments
# 3, 4, 8, and 9 reflect the “wrestling” between incorrect
prior knowledge and informative observations. The pos-
terior distributions in Experiments # 8 and 9 are also char-
acterized by lower standard deviations (Table 4). These all
conform with our expectations based on Bayes’ rule and
previous study (Scollo et al. 2008) on the sensitivity of total
eruption mass in Tephra2.

Sample site locations In Experiments # 10 and 11,
ten measurements at proximal (and closely-spaced) and
medial localities are used as input observations, respec-
tively (see sites in Fig. 1a). Here the proximity is defined
relatively, but this would not affect any results or conclu-
sions in these experiments, as our argument that the algo-
rithm is constructed correctly is demonstrated through
comparison. We only consider cases with sample sites
located in the downwind area with respect to the source
vent. This is because the main goal of this experiment
is to present and introduce the algorithm, not to explore
under what conditions it would be hard for the algorithm
to effectively update the prior.
In Experimenet # 10, the sample sites (yellow points in

Fig. 1a) are all clustered and located close to the vent.
In theory, they cannot provide too much useful informa-
tion for the Bayes’ rule to greatly update the posterior
distributions, because the sample sites are too close to
each other, and hence the observations are similar to
each other. This is consistent with the results: the sam-
pled posterior distributions from Experiment # 10 are not
greatly updated from the priors. The posterior mean and
standard deviation of the column height (16085 m and
1863 log-transformed kg, respectively) are similar to those
of the prior (Table 4). The posterior mean of the log-
transformed eruption mass is 26.106 log-transformed kg,
and is characterized by a relatively greater standard devia-
tion (0.280 log-transformed kg) compared to results from
other experiments.
In Experiment # 11, the sample sites are spatially medial

to the source vent, i.e., neither especially close nor far rel-
ative to the entire span of distances (pink points Fig. 1a).
The sites are distributed in a more scattered pattern than
are those in Experiment # 10. These observations provide
more useful information than do the proximal observa-
tions (Experiment # 10), which can be used to update the
priors. This is consistent with results of Experiment # 11.
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As shown in Table 4, the posterior means of the column
height and log-scaled eruption mass are consistent with
the true values, and the posterior distributions are also
characterized by smaller standard deviations compared to
those in Experiment # 10 and the specified priors.
Resultant posterior distributions from Set 1 experi-

ments are consistent with our expectations based on
Bayes’ rule, suggesting that the presented algorithm is
constructed properly for Tephra2 in these simplified sce-
narios. We hope that these experiments could also help
potential users understand how and why inputs of the
algorithm affect its performance.

Set two experiments
In Set Two, two main experiments plus two supplemen-
tary experiments are implemented. The two main exper-
iments are done to show that the algorithm is able to
estimate a set of ESPs and wind-related variables. In the
two main experiments, we find that posterior distribu-
tions of diffusion coefficient and column height are similar
to their priors. Two supplementary experiments, which
will be introduced later, are thus proposed to show that
the variable diffusion coefficient can be well characterized
in simpler scenarios. For column height, the posterior dis-
tribution is not updated because a relatively strong prior
is specified.
In the two main experiments, we estimate eight vari-

ables of interest with the simplified wind profile: column
height, total eruption mass, α (which characterizes tephra
mass distribution along the column; β is fixed to be 2 in
all Set 2 experiments; see Table 2), median and standard
deviation of total grain size distribution, diffusion coeffi-
cient, wind direction, and maximum wind speed. We do
not attempt to estimate more ESPs because other ESPs are
in many cases well-constrained (e.g., vent coordinates and
elevation, maximum andminimum grain size considered).
The only difference between the two main experiments
is that different levels of relative measurement error are
assumed, which are 28.9% (Experiment # 1; likelihood
scale: 0.12) and 14.0% (Experiment # 2; likelihood scale:
0.06), respectively. These values are set arbitrarily, but
since the goal to have two experiments (two measurement
errors) is to see whether they would affect the resultant
posterior distributions, these arbitrary decisions would
not affect the motif herein.
For all four experiments (twomain experiments plus the

two supplementary ones) in Set Two, the ESPs and wind
conditions used to generate the “observations” are the
same as in Set One experiments, and are listed in Table 2.
All sample sites shown in Fig. 1a are the assumed sam-
ple sites, and Tephra2 outputs at these sites are assumed
to be the “observations”. We assume that we have lit-
tle knowledge on the ESPs and wind conditions that are
to be estimated in the two main experiments except for

column height, which has a prior Gaussian distribution
with mean and standard deviation being 15000 and 2000
m, respectively. This prior is relatively well-constrained in
Set 2 main experiments given the number of variables to
be estimated and the amount of observations. All priors
are listed in Table 5.
In each experiment, five hundred thousand samples are

drawn. The first 10000 samples are abandoned, and the
sample interval is set to be 50 to avoid auto-correlation
(for each experiment, three runs are done to check for
convergence). The same implementation is done for the
supplementary experiments.
Means and standard deviations of resultant posterior

distributions in the two main experiments of Set Two are
listed in Table 5. Most posterior means are at or close to
their true values with greatly reduced uncertainty com-
pared to the corresponding priors. The exceptions are the
diffusion coefficient and column height. For the former,
the corresponding posterior means are 6647 and 6248
m2/s (true value: 5000 m2/s) with standard deviations
of 1877 and 1524 m2/s, respectively, in the two experi-
ments. Its sampled posterior distributions also resemble a
uniform distribution, which is how the prior is specified.
The posterior distribution of column height is not

greatly updated from the prior in the first main
experiment with a greater assumed measurement error
(posterior mean and std: 14828 and 2025 m). For the sec-
ond experiment with a smaller measurement uncertainty,
the corresponding posterior standard deviation becomes
slightly smaller (posterior mean and std: 14550 and 1690
m).
As a smaller measurement error is assumed in the sec-

ond main experiment of Set 2, based on Bayes’ rule,
we expect to see better-constrained posterior distribu-
tions (i.e., with lower posterior standard deviations) in
that experiment. This is confirmed in our results. As
shown in Table 5, the posterior standard deviations in the
second experiment of Set 2 are all smaller compared to
those from the first experiment. This is consistent with
Bayes’ rule.
We also list posterior correlations between variable

pairs from the two main experiments in Table 6. It can
be seen that several variable pairs are characterized by
high-magnitude correlation, suggesting that the interac-
tion between ESPs and wind conditions is critical, and
should not be ignored in tephra inversion.

Supplementary experiments
From the two main experiments, we find that variables
diffusion coefficient and column height are relatively hard
to constrain. Two additional, supplementary experiments
are thus done to prove that the variable diffusion coeffi-
cient can be well-estimated in simpler scenarios. We do
not experiment with column height here as experiments
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Table 5 True values of the ESPs and wind conditions to be estimated, their assumed priors, and means and standard deviations of the
resultant posterior distributions in Set 2 experiments

in Set 1 have proved that it can be well-estimated in
simpler scenarios.
We decide to estimate α (which characterizes tephra

mass distribution along the column), diffusion coefficient,
wind direction, and maximum wind speed of the sim-
plified wind profile in the supplementary experiments.
We assume that all other ESPs and wind conditions are
known. The priors of these variables are the same as in
the two main experiments, and are shown in Table 5. The
only difference between the two is the assumed relative
measurement errors, which are 13.5% and 6.7%, respec-
tively. Again, it is through comparison that we validate the
algorithm. Exact values of the two would not affect the
motif herein. Similarly, the other three variables are cho-
sen arbitrarily, but would not affect conclusions or results
in these experiments given the goal of the supplementary
experiments.
Posterior means and standard deviations of the vari-

ables to be estimated are shown in Table 5. It can be

seen that variables other than the diffusion coefficient
are well-constrained in both experiments. In terms of dif-
fusion coefficient, the supplementary experiment with a
greater measurement uncertainty has its posterior dis-
tribution centered at 5403 with a standard deviation of
1142. In the experiment with a smaller assumed mea-
surement uncertainty, the resultant posterior distribu-
tion finally becomes close to the true value (posterior
mean: 5078), and the posterior standard deviation is
also smaller (543) compared to the other supplementary
experiment.
Results in the two supplementary experiments sug-

gest that the variable diffusion coefficient can be well-
estimated in simpler scenarios. Comparing posterior
distributions from the two suggests that its posterior dis-
tribution is hard to constrain given limited observations
compared with the other ESPs.
Together with the fact that the M-H algorithm is a

generalized probabilistic inversion algorithm, results from

Table 6 Posterior correlation table for results from the two main experiments in Set 2. Blue and pink cells correspond to results from
the first (with greater assumed measurement error) and second (with lower assumed measurement error) experiments, respectively.
Correlations with magnitude above 0.5 are marked



Yang et al. Journal of Applied Volcanology            (2021) 10:1 Page 15 of 24

Sets 1 and 2 experiments suggest the validity of the pre-
sented algorithm.

Set three experiment with non-simplified wind profile
Results from one experiment with non-simplified wind
profile are presented in this section. The ESPs and wind
conditions to generate the synthetic data are shown in
Table 2. Change in wind speed and direction with eleva-
tion is taken into account in this experiment. The wind
speed is specified to increase from 0 on the ground to a
maximum of 70m/s at 16 km, and then decrease to 10m/s
at 24 km. The wind direction is to the north on the ground,
and gradually changes to eastwards with elevation.
We set our ESPs of interest to be column height and log-

transformed total eruption mass. For the wind profile, we
choose to estimate wind directions and speeds at elevation
levels 5, 14, and 18 km a.s.l. Wind speeds and directions at
other elevations are assumed to be known. This amounts
to eight variables: the two ESPs and wind directions and
speeds at the three elevation levels.
We do not choose to estimate wind direction and speed

at all elevation levels (i.e., estimate the complete wind pro-
file) because that would significantly increase the number
of variables to be estimated. In such circumstances, the
problem could become hard to solve as the increased
dimensionality of the input space makes it hard for the
algorithm to draw samples efficiently. At the same time,
we know that wind speed and direction only affect wind
advection in Tephra2. This means that different combina-
tions of wind speeds and directions at various elevations
could lead to similar simulated results inTephra2, and that
they could remain relatively independent from other ESPs
in many cases. This is comparable to vector decomposi-
tion: one vector (the total distance each tephra particle
travels due to advection in Tephra2) can be decomposed
to the sum of infinite combinations of two or more vectors
(distances each tephra particle travels within two or more
elevation layers).
Therefore, an experiment that estimates the wind direc-

tion and speed at each elevation cannot be used to justify
the method works even if sufficient draws are made. With
poorly-constrained priors, we know that the posterior dis-
tributions cannot be greatly updated (because we know
that a lot of local minima exist, and we are given limited
observations given the number of variables to be esti-
mated). On the other hand, we cannot tell whether the
priors are specified properly: given the high dimensional-
ity, it would be hard for us to know whether the priors are
specified too close to the real wind profile or not. Here, the
current experiment is designed to show that the method
is able to estimate wind speeds and directions at sev-
eral elevations when the problem is known to be solvable
(i.e., relatively fewer variables are to be estimated). More
discussion on the use of simplified and non-simplified

wind profiles in tephra inversion is given in the following
section.
Elevation levels 5, 14, and 18 km are chosen because

wind directions at these elevations are 25°, 65° and 85°,
respectively. We “collect” tephra mass per unit area at
495 randomly selected sample sites (Fig. 1b). The dataset
size is greater than commonly-seen thickness or mass
per unit area datasets of tephra fall deposits. Estimating
wind speed and direction at a few elevations and having
495 observations are not realistic in studies on tephra fall
deposits. However, these are adopted such that we know
that the problem is solvable, and can be used to validate
the algorithm. The number of “observations” is chosen
arbitrarily, but the value of this number (whether it is
500 or not) would not affect any results or conclusions
from this experiment, because what we need is sufficient
amount of observations. Any number that is above ∼350
would work.
Other ESPs, and wind directions and speeds at other

elevations, are kept fixed throughout the implementation
of the algorithm. Fifty thousand runs are done for three
times with different starting points. In each run, the first
2000 runs are discarded to avoid auto-correlation, and fur-
ther subsetting with an interval of 50 points along the
sample chain are subsetted as the final results. The resul-
tant sample posterior distributions from the three runs
is similar, suggesting that the results converge. The pos-
terior mean and standard deviation for each variable of
interest are listed in Table 7. They are highly consis-
tent with specified values used to generate the dataset,
and the posterior standard deviations are smaller than
those of the priors. The results suggest that the algo-
rithm functions when a non-simplified wind profile is
adopted and the number of variables of interest limited.
Greater uncertainty is obtained for wind direction and
speed at higher elevations (i.e., 14 and 18 km). This is
due to the fact that the wind speed at higher elevations
is generally greater, and the estimated uncertainty scales
with it.

Discussion
In this work, we introduce an algorithm coupling the ash
dispersal model Tephra2 with the Metropolis-Hastings
implementation of MCMC. We validated it with syn-
thetic data generated by Tephra2. By varying the inputs
to the algorithm and observation datasets one at a time,
we examine and explain how they affect the performance
and efficiency of the algorithm. Three sets of experiments
are done. The first set focuses on simple scenarios (i.e.,
with simplified wind profile) with two variables of inter-
est (i.e., total eruption mass and column height) given
ten or thirty observations. In these experiments, the algo-
rithm is shown to work well, and has the ability to quan-
tify the uncertainty in the estimate. Resultant posterior
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Table 7 True values, specified prior types and parameters, and posterior means and standard deviations for the Set 3 experiment with
the non-simplified wind profile

distributions from these experiments are consistent with
expectations from Bayes’ rule.
In the second set of experiments, we focus on estimating

posterior distributions of six ESPs and two wind-related
variables. The results suggest that posterior distributions
of most of the variables of interest are greatly updated
from their corresponding priors.While posterior distribu-
tions of column height and diffusion coefficient are similar
to their priors, respectively. This is because a relatively
strong prior is specified for column height, and it is harder
to constrain the posterior distribution of diffusion coef-
ficient. The supplementary experiments in Set 2 suggest
that diffusion coefficient can be well estimated in simpler
scenarios.
In Set 3, we set out to estimate two ESPs, and wind

directions and speeds at three elevation levels given suffi-
cient observations. In this experiment, wind direction and
speed are set to vary with elevation. The results suggest
that the algorithm could work well with a non-simplified
wind profile.
Our discussion here focuses on advantages and limi-

tations of the algorithm, interpreting the posterior cor-
relation between column height and total eruption mass
in our experiments, and whether we should attempt to
estimate wind direction and speed at each elevation in
tephra inversion when working with Tephra2. The algo-
rithm is then applied to the mass per unit area dataset of
the 2011 Kirishima-Shinmoedake tephra deposit to infer
the corresponding ESPs.

Advantages and limitations
The main advantages of the algorithm are that it makes
use of prior knowledge on a deposit and eruption, and
quantifies the uncertainty in the estimate of ESPs in a
statistically formal manner.
In studies on tephra fall deposits, previous knowledge

plays a critical role in determining the ESPs and recon-
struction of volcanic eruptions (Sparks et al. 1997; Mastin
et al. 2009). Such knowledge has uncertainty within it.
How to properly incorporate such uncertainty in the

estimated results is challenging without a probabilistic
Bayesian framework.With the algorithm, prior knowledge
about the studied deposit and eruption, and their asso-
ciated uncertainties, is denoted as the prior probability
distribution, and incorporated in the estimate. Practi-
cally speaking, prior knowledge is being used consistently
throughout the implementation of the algorithm. That is,
the prior probability helps determine whether to accept
or reject a proposed point in each draw of the algo-
rithm. However, for a non-probabilistic inversion method,
such as gradient methods, prior knowledge might be used
only once in the inversion process–it helps determine the
starting point.
In tephra deposit inversion, uncertainty in the estimated

ESPs comes from the interplay of multiple sources, which
include the uncertainty in the prior, measurement uncer-
tainty, and potential model uncertainty. Non-probabilistic
inversion method helps us find the optimum ESPs that fit
well to field observations, but the uncertainty cannot be
quantified.
The algorithm samples from the posterior distribution

without any presumptions. This means that (1) its results
are fully Bayesian; and (2) more flexibility is given to
the users, as they could change forms of priors and like-
lihood functions based on their own needs (either by
choosing the available options in the present version of
the code or by modifying the code). Therefore, the algo-
rithm can be used to explore how different factors and
components in tephra inversion, such as sample site dis-
tribution and form of the likelihood function, affect the
results. (White et al. 2017) proposed an efficient inver-
sion method which quantifies the posterior uncertainty
with linear analysis. The linearity assumption allows the
method to operate with efficiency, but the prior and like-
lihood function in their method have to be Gaussian such
that the method functions properly, and so are the resul-
tant posterior distributions. This might be less convenient
when certain variables are known to have bounds (e.g.,
standard deviation of grain size distribution being greater
than zero).
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Efficiency and the ability to quantify the uncertainty
are main motivations driving the development of different
tephra inversion techniques (Connor and Connor 2006;
Klawonn et al. 2012; White et al. 2017; Mannen et al.
2020), but there is always a tradeoff between thesemotiva-
tions. Therefore, we think that different tephra inversion
methods are equally important, and users should decide
which method to use based on their specific needs. The
presented algorithm represents one end of the spectrum:
it only focuses on sampling from the posterior distribution
in a statistically formal way without considering efficiency
(i.e., no simplifications are made in the algorithm). This
is not possible without the low computational cost of
Tephra2.
Whether the priors, number of draws, and standard

deviations of the proposal functions are specified prop-
erly or not affects the performance of the algorithm. This
problem arises as long as the M-H algorithm is adopted,
and there is no definitively correct way to determine some
inputs to the algorithm. Measures to check whether it is

used properly are given. The introduction on the algo-
rithm and experiments in Set 1 are presented such that
how each element in the algorithm affects its performance
is given with demonstration.

Correlation in the posterior distribution
Correlations are detected in the posterior distributions
in our synthetic experiments (Tables 4 and 6). Here we
focus on posterior correlations in Set 1 experiments, as
their setups are simpler. Even in such extremely simpli-
fied scenarios, as shown below, properly interpreting the
correlation is not straightforward. Correlations in these
experiments are shown in Table 4, and the bivariate pos-
terior distributions from selected experiments are shown
in Fig. 3.
We find that both negative and positive correlations

exist between column height and total eruption mass in
the sampled posterior distributions, and whether the cor-
relation is positive or not depends on sample site locali-
ties. In Experiments # 10 and 11, the correlation is positive

Fig. 3 Selected sampled posterior distributions of column height and log-transformed total eruption mass in 2D. Dashed lines mark true values of
column height and log-transformed total eruption mass. a: posterior distributions from Set 1 Experiments # 0 (red; reference experiment) and 4
(blue; experiment with incorrect priors); b: posterior distributions from Set 1 Experiments # 5 (red; experiment with 30 observations) and 9 (blue;
experiment with 30 observations and incorrect priors). c and d display posterior distributions from Set 1 Experiments # 10 and 11 (experiments with
different sample site locations), respectively
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(0.986 and 0.831), and for the rest, the correlation (-0.474-
-0.856) is negative.
This can be explained by the physics of tephra transport.

If observations are made at distal localities (i.e., Exper-
iments # 0-9), the combination of (a) a greater column
height, which allows tephra to be dispersed farther down-
wind and leads to more tephra deposition at distal sites,
and (b) a smaller total eruption mass (eruption mass is
proportional to tephra thicknss/mass per unit area every-
where) leads to results similar to the combination with
a lower column height and a greater total eruption mass
(within the area where footprints of tephra deposits over-
lap). Therefore, the correlation is negative in Experiments
# 0-9.
A lower column height leads to a thicker tephra deposit

at proximal sites because of less interaction with wind, and
less time for turbulent diffusion to disperse tephra to dis-
tal localities. Total eruption mass is always proportional
to tephra thickness and mass per unit area. The above
arguments suggest that scenarios with (1) greater column
height and greater total eruption mass and (2) lower col-
umn height and lower total eruption mass lead to similar
tephra thickness or mass per unit area if the observations
are all made at proximal sites.
These relationships are consistent with previous studies

(e.g., Suzuki and et al (1983) and Bonadonna et al. (2005)),
but how their interaction with sample site locations would
affect the correlation between the variables of interest in
tephra inversion has not been reported or noted. The cor-
relation in Experiment # 10 is surprisingly high (0.986),
which is due to the facts that the sample sites are too close
to each other, and the “observed” tephramass per unit area
values at these sites have similar values. To the algorithm,
the ten observations in Experiment # 10 are almost the
same (both their locations and their observed values). The
high correlation reveals that non-unique solutions exist in
Experiment # 10.
The presence of correlation in the posterior distribution

suggests that the interaction of variables plays a role in
tephra inversion. This is consistent with results from sen-
sitivity analysis on Tephra2 in the work of (Scollo et al.
2008). This finding suggests that the algorithm has the
potential to be used to discover intrinsic relationships
(interactions) between variables of interest and wind con-
ditions in Tephra2 and other dispersionmodels, and could
thus improve our understanding on different sources of
uncertainty in tephra inversion.

Whether to estimate wind direction and speed at each
elevation
The algorithm can be used with either simplified or non-
simplified wind profiles. It is always preferred to have a
more exact and detailed understanding on wind condi-
tions in tephra inversion. Estimating a lot of variables at

the same time could be challenging for the algorithm as
the number of draws has to be finite. It is common to
estimate six or more ESPs (e.g., column height, total erup-
tion mass, column mass distribution, mean and standard
deviation of grain size distribution, and diffusion coeffi-
cient) in tephra inversion. If wind direction and speed are
to be estimated at ten elevations, this adds up to at least
26 = 6+ 10× 2 variables of interest. Considering just two
values for each variable, this means 226 (which is greater
than 60 million) possible combinations for the 26 vari-
ables. The number of field measurements for tephra fall
deposits rarely exceeds 300.
This problem could be resolved by the method pro-

posed by White et al. (2017), which is able to estimate a
full complement of uncertain ESPs and wind conditions,
and provide estimates of posterior variances. This is owing
to the use of regularization techniques in their method
that can accommodate much higher dimensionality. A
solution can be found, but how the solution connects to
the wind profile in reality (how well the solution repro-
duces reality) is another interesting and different topic.
The wind profile only affects advection of tephra disper-
sal in Tephra2. Similar to vector decomposition, the total
effect of advection for tephra particles with a certain grain
size could always be decomposed into different combina-
tions of advection effects at each elevation level. Multiple
or a series of optimum solutions of wind profile are likely
to exist. Therefore, we think that it is not always necessary
to estimate the wind speed and direction at each elevation
level especially given extremely sparse observations. As no
presumptions are adopted in the present algorithm, allow-
ing two ways to specify the wind profile in the algorithm
could help address questions associated with wind condi-
tions in tephra inversion, such as under what conditions
and how details of the wind profile affect the inversion
results.

Application to the Kirishima-Shinmoedake dataset
In this section, we apply the M-H algorithm to a dataset
containing mass of tephra per unit area for the 2011
Kirishima eruption. The goals are to show that Tephra2
outputs from using posterior means from the algorithm
as ESPs and wind conditions would resemble field obser-
vations, and that the posterior distributions can be char-
acterized by lower uncertainty compared to their cor-
responding priors. We refrain from going into details
in the physics of tephra transport and how the interac-
tion between variables would affect the estimates. This
is because tephra dispersal processes that are not taken
into account by Tephra2 did affect tephra dispersal during
the eruption (Mannen et al. 2020) . For the same reason,
comparing observed and predicted ESPs is not done in
the present work (because we know that even if we apply
the observed ESPs and wind conditions to Tephra2, the
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prediction would still be different from observations given
the presence of model uncertainty). Discussions on model
uncertainty are outside the scope of this work. See (Man-
nen et al. 2020) for a detailed, careful, and strict treatment
of tephra inversoin for this deposit.
The Kirishima-Shinmoedake event took place from 26

to 29 January, 2011, with an eruption of the Shinmoedake
volcano. The column height ranged from 6.2-8.6 km above
the crater, based on different models and Doppler radar
measurements (Shimbori and Fukui 2012; Maeno et al.
2014). The total eruption mass was estimated to be 1.8 −
3.1 × 1010 kg by Nakada et al. (2013). The mass of tephra
erupted from the afternoon of 26 January to the early
morning of 27 January, which corresponds to the current
dataset, is about 1.4 – 2.5 × 1010 kg (Maeno et al. 2013).
The wind was blowing to the southeast, and the wind
profile is reported in Hashimoto et al. (2012).
The tephra deposit data we are using are reported in

White et al. (2017). Detailed description of the dataset can
be found in White et al. (2017) and Mannen et al. (2020).
Tephra thickness and grain size distributions were mea-
sured at 55 locations downwind from the vent. In addition,
tephra thickness was measured at another 63 locations.
The thickness measurements were converted to mass per
unit area (Fig. 4a).

We set the ESPs to be estimated as column height, erup-
tion mass, α (in this experiment, β is fixed to be one),
median and standard deviation of grain size distribution,
diffusion coefficient, fall time threshold, and densities of
lithic and pumice fragments. The eddy constant is fixed as
0.04. For the wind condition, a simplified wind profile is
adopted, to avoid overcomplication of the problem, as dis-
cussed before. We assume that the wind speed increases
linearly from 0 to 11 km a.s.l., and then decreases with
elevation to 24 km a.s.l. This setup is based on the wind
speed profile reported in (Hashimoto et al. 2012). Wind
direction and maximum wind speed are the two variables
to be estimated for the wind profile. This amounts to 11
variables of interest and 118 mass per unit area observa-
tions for the problem. The priors of these variables are
inferred based on (Shimbori and Fukui 2012; Nakada et al.
2013;Miyabuchi et al. 2013;Maeno et al. 2014;White et al.
2017), and are shown in Table 8. These priors are generally
consistent with the priors defined in (White et al. 2017)
except that eddy constant is set to be a fixed value in our
experiment.
We draw fifty thousand samples; this process is repeated

three times. Sample distributions from the three runs are
almost identical to each other, suggesting that the results
converge. The first 5000 samples are discarded to exclude

Fig. 4 a and b: observed and simulated tephra masses per unit area, respectively, of the 2011 Kirishima-Shinmoedake eruption dataset. In b, the
ESPs and wind conditions are determined based on the posterior means. See Table 8 for their values. The corresponding isopachs are also shown in
the four subfigures. Levels of these isopachs are 50, 25, 10, 5, 1 kg/m2; c: absolute difference (point size) and difference (point color) between
simulated and observed masses per unit area. d: relative error, i.e., (simulation-observation)/observation for each sample. Points that have relative
error with magnitude greater than 1 are marked as crosses
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Table 8 Priors and posterior means and standard deviations from applying the algorithm to the 2011 Kirishima-Shinmoedake eruption
tephra mass per unit area dataset. Priors of column height, total eruption mass, and median and standard deviation of grain size
distribution are referenced and inferred from (Shimbori and Fukui 2012; Nakada et al. 2013; Miyabuchi et al. 2013; Maeno et al. 2014;
White et al. 2017). Priors of α/β ratio, diffusion coefficient, fall time threshold, and pumice and lithic densities are specified as
commonly adopted ranges or maximum ranges possible

the impact from the initial starting point. For the rest of
the chain, we collect samples based on a 15-point inter-
val to avoid autocorrelation. Large relative measurement
uncertainty (i.e., 45%) is adopted here. This value is larger
than the one (30%) adopted inWhite et al. (2017); Engwell
et al. (2013). This is because from our experiments, we
find that for some observations with very low magnitude,
with 30% ofmeasurement error, the likelihood always goes
to zero. This means that the relative measurement error of
these observations has to be greater than 30% (and assum-
ing the absence of model uncertainty). We could either
assign a greater measurement error to these observations,
while keeping the others having 30% of relative measure-
ment error, or assign a greater measurement error for all
observations. Both can be done by the algorithm (but the
former requires slight modification of the current code),
but here we prefer the latter. This is consistent with the
main goal of this experiment: to show that the algorithm is
able to reproduce observations of a real tephra fall deposit,
and this could avoid justifying how and why we adjust the
measurement error for certain observations.
The results are summarized in Table 8. The resultant

isopach maps, differences between observations and sim-
ulations, and relative errors are presented in Fig. 4. Pos-
terior means of column height and total eruption mass
are in general consistent with previous studies, and are
updated from the priors with posterior standard devia-
tions being much smaller. The simulated mass per unit
area data from Tephra2 with posterior means as ESPs
and wind conditions are plotted against field observations
in Fig. 5, which suggests that Tephra2 could generally
reproduce field observations based on estimated results
from the algorithm. Posterior means of column height
and total eruption mass are 7.3 km and 9.14 × 109 kg,

respectively. The former is within the range of the
observed column height, and the latter is smaller than
estimates from previous work.
Posterior distributions of the other ESPs generally lie

within commonly-seen ranges (Table 8), and are also
altered from the corresponding priors. We note that the
posterior mean of the median of grain size distribution
is finer than data reported by Miyabuchi et al. (2013).
We think that this could be explained by the fact that
data reported by Miyabuchi et al. (2013) represent the
grain size distribution at certain sample sites, whereas our
estimate focuses on the total grain size distribution.

Conclusions
In this work, we couple the well-known M-H algorithm
with the tephra transport and deposition model Tephra2.
The coupled algorithm can be used to infer ESPs of
explosive volcanic eruptions and ambient wind conditions
based on thickness or mass per unit area measurements of
tephra fall deposits under a Bayesian framework. It allows
users to include their prior knowledge on the eruption
or deposit with field observations in a statistically formal
way. The result of the algorithm is presented as sample
posterior distributions for the variables of interest.
We introduce the model Tephra2 and basic elements of

Bayes’ rule, and present intuitive interpretations on the
M-H algorithm. How to implement the coupled algorithm
and formats of the input files are also introduced.
The coupled algorithm is validated with three sets of

experiments. For the first set, we focus on two variables of
interest. In these experiments, we vary values of the input
and size of the synthetic observation dataset one at a time
to show that the algorithm functions consistently with
expectations based on the Bayes’ rule, and also to show
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Fig. 5 Simulated data from Tephra2 using posterior means as ESPs and wind conditions plotted against observation data of the tephra deposit from
the 2011 Kirishima-Shinmoedake eruption under log-scale

how inputs affect the performance of the algorithm. In
the second set of experiments, we estimate eight variables
of interest with poorly-constrained priors (except for col-
umn height). The results show that the algorithm is able to
effectively estimate the posterior distributions of most of
the variables of interest, but the posterior distributions of
column height and diffusion coefficient are similar to their
priors. For the former, that is because its prior is speci-
fied to be well-constrained. Supplementary experiments
are done to show that the variable diffusion coefficient can
be well-estimated in simpler scenarios. The combination
of these experiments suggests the validity of the algorithm,
and indicates that posterior distributions of some ESPs are
harder to constrain compared to others.
In the experiment in Set 3, we set eight variables of inter-

est to be estimated, including not only two ESPs, but also
wind directions and speeds at three elevation levels. This
experiment is set up to show that the algorithm works
with a complex wind profile.
Advantages of the algorithm are that it has the ability

to incorporate prior knowledge into the estimate in a sta-
tistically formal way, and to quantify the uncertainty in
the estimate, and it captures correlation between variables
of interest in the estimate. Because of these advantages,
we think that the algorithm has the potential to improve
our understanding on how different sources of uncer-
tainty interact and affect the results in tephra inversion.
The main limitation of the algorithm is that there are

subjective choices in implementation, which affect its per-
formance. How and why they affect the algorithm are
introduced, and commonly adopted measures and refer-
ences (Chib and Greenberg 1995; Andrieu et al. 2003;
Kaipio and Somersalo 2006) on how to specify the inputs
properly are given.
Correlations between variables of interest exist in our

experiments. Interpretation based on the physics of
tephra transport is given for the correlations in Set 1
experiments (which are extremely simplified): whether
the correlation between column height and total eruption
mass is positive or not depends on sample site locations.
A greater column height has a positive and negative rela-
tionship with tephra mass per unit area at distal and
proximal sample sites, respectively, and total eruption
mass is always proportional to tephra mass per unit area
regardless of sample site location.
The algorithm supports specifying and estimating the

wind profile in two ways. The first one takes advantage of
a simplified wind profile based on four variables of inter-
est, and assumes that the wind direction does not change
with elevation. The second one allows users to estimate
wind speed and direction at certain or all specified eleva-
tion . We argue that users need to be cautious in choosing
how to specify and estimate the wind profile, because the
second way could introduce a lot more variables to be
estimated, and might be unnecessary. How to choose the
appropriate way to specify and estimate the wind profile
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relies on factors such as prior knowledge of weather con-
ditions and sample site distributions. We think that by
experimenting on appropriate synthetic data, this ques-
tion can be addressed. We apply the algorithm to the 2011
Kirishima-Shinmoedake tephra dataset, and the results
are in general consistent with observations from previ-
ous work. We hope that the present work benefits future
studies that attempt to implement tephra inversion and
quantify the associated uncertainty.
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