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Abstract

Recording probabilities for large-magnitude (M ≥ 4) explosive eruptions are assessed regionally over the last 1000
years, using the LaMEVE database. Although the uncertainty is large, due to the scarcity of large eruptions, it does not
swamp differences in recording probabilities across times and regions. Broadly, the results reflect the pattern of
European colonial expansion. Iceland presents an interesting anomaly, with a declining recording probability—going
back in time—conflicting with its long history of written records. However, this may be explained by the loss of
records in the 17th and 18th centuries. Globally, we find that records of roughly 40% of large-magnitude explosive
eruptions are missing. There is a marked difference in modern recording probabilities pre- and post-1980, which we
attribute to changes in the way that the magnitude of large eruptions is assessed.
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Introduction
This is a follow-up paper to Rougier et al. (2016), to
which readers should refer for a wider review of the issue
of under-recording. In that paper, we showed that the
global recording probability for large explosive eruptions
of stratovolcanoes falls rapidly from 100% going back in
time, based on the observations in the LaMEVE database
(Crosweller et al. 2012; Brown et al. 2014). ‘Large’ was
defined as having a recorded magnitudeM ≥ 4.0, accord-
ing to the scale of Pyle (2000) and Mason et al. (2004); we
denote this as ‘M4+’ below. The global recording probabil-
ity was below 50% prior to 1600CE, and below 20% prior
to 1100 CE (with at least 95% confidence); see Fig. 5 below.
Rougier et al. (2016) used a Frequentist approach, partly

for simplicity, and partly to avoid the additional structure
that would be introduced by a prior distribution. In this
paper we estimate recording probabilities for the last mil-
lenium, region by region. Our regions are those defined in
the Volcano Reference File of the Smithsonian Institution.
To a large extent each region is reasonably coherent
in terms of tectonic setting, although some involve
more than one volcano-tectonic province. We extend our
analyis from stratovolcanoes to all volcanoes capable of
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producing explosive eruptions. As well as being useful for
further analysis at the individual volcano level, differences
in the recording probabilities between regions ought to
confirm or possibly challenge the narrative evidence about
the development of the recording process (Siebert et al.
2010, pp. 31–34).
The cost of this more detailed assessment is mainly

in statistical and computational complexity. The statis-
tical model is straightforward, but its implementation
within a Bayesian approach requires sophisticatedMarkov
Chain Monte Carlo (MCMC) methods (described in the
Appendix). As well as assessing the recording probability
as a function of time for each region, we aggregate to pro-
duce a gobal recording probability, which largely confirms
the findings of Rougier et al. (2016). However, as might
be anticipated, we find that recording probabilities vary
widely from one region to another, and the uncertainty
about recording probabilities is typically high, going back
even one hundred years.

Methods
For a specified region and a specified time-interval (taken
to be from the start of 1000 to the start of 2015, for every
region), recorded eruptions are modelled as a Poisson
process with time-varying rate λ r(t), with units of yr−1,
where both the scalar λ and the function r are uncertain.
The scalar λ is the rate of M ≥ 4.0 eruptions, treated as
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effectively constant over the last 1000 years. The function
r represents the probability that a large eruption at time
t is recorded in the LaMEVE database. We impose the
conditions that

(i) The recording probability function r is increasing in
time, and

(ii) it has been 100% since some specified time in the
recent past, which we take to be 1980 for all regions
(see below, Results).

Rougier et al. (2016) used a simple approach in which
the time-period was divided into 10 intervals of 100 years
each, from 1050 to 1950, plus two futher intervals of
1950–1979 and 1980–2014, this final interval having a
recording probability of 1. The recording function r was
then modelled as an average value for each interval. In
this paper we take advantage of a Bayesian approach
to propose a more flexible representation of r, which is
expressed semi-parametrically, as a piecewise linear inter-
polation of a collection of m + 3 knots (discrete points,
shown as dots in Figs. 1 and 2), illustrated in Fig. 1 and
specified in (4) in the Appendix. Briefly, the recording
probability is equal to u at time-point a, the start of
the time-interval, and then increases linearly in steps of
(1 − u)/(m + 1) at knot locations v1, . . . , vm, where
a < v1 < · · · < vm < b0, before attaining the value 1
at the time-point b0, and remaining at 1 until time-point
b, at the end of the time-interval. The values (a, b0, b) are
specified, and (u, v1, . . . , vm) are treated as uncertain.
The number of internal knots is set to m = 11, to

give a set of recording probability functions rich enough
to have several different segments, including more than

one segment in which the recording probability increases
rapidly. Figure 2 shows how this approach with m = 11
approximates the type of recording probability function
that might occur in practice.
The Bayesian approach requires a prior distribution

for (λ,u, v1, . . . , vm). We choose a vague prior distribu-
tion in which the three elements are independent (this
prior being the same for each region). u and v, which
have bounded support, are given uniform marginal dis-
tributions (see the Appendix for more details). λ, which
has unbounded support (λ > 0) is given a Gamma dis-
tribution with shape parameter 0.5 and rate parameter
20 yr. There being 19 regions, this prior for each region’s
λ implies a 95% equi-tailed prior credible interval for
the global λ of 0.22 to 0.82 yr−1, consistent with our
beliefs about the global rate of large explosive volcanism.
Equation 6 shows that these prior values are rapidly dom-
inated by the observations. Expectations with respect to
the posterior distribution are computed by Markov Chain
Monte Carlo (MCMC). Full details of the prior distri-
bution, the model, and the MCMC sampler are given in
the Appendix.

Results
The observations are from the LaMEVE database, ver-
sion 3.1 (Crosweller et al. 2012; Brown et al. 2014), down-
loaded October 2015. All eruptions in this database are
treated as explosive, and the lower bound on large erup-
tions isM ≥ 4.0, according to the scale of Pyle (2000) and
Mason et al. (2004), or at least 108 tonnes of eruptedmass.
The calculations were performed in the R statistical com-
puting environment (R Core Team 2016). All of the code
and the dataset are available from the first author.

Fig. 1 Schematic of the model for the recording probability r(t), expressed as a deterministic function of (u, v), where v = (v1, . . . , vm). The internal
knot locations v1, . . . , vm are treated as uncertain, and augmented with additional knots at known locations a = 1000, b0 = 1980, and b = 2015.
See the “Results” section for our choice of b0, and (4) in the Appendix for more details
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Fig. 2 Example of approximating a recording probability function using linear interpolation withm = 11 internal knots. The dashed curve is a
hypothetical recording probability function. The valuem = 11 is chosen as being sufficiently large to capture the types of shapes that might appear
in the recording probability function across the different regions

Rougier et al. (2016) used only large explosive eruptions
from stratovolcanoes, whereas in this study we use large
explosive eruptions from all types of volcano. Although
the total number of eruptions in this study is larger (281
versus 188), the globally-aggregated recording probabil-
ities through time are similar to those in Rougier et al.
(2016), as shown in Figs. 5 and 6, below.

Choice of time intervals. The semi-parametric model
for the recording probability over the time interval (a, b)
contains a specified time b0 ≤ b at which the record-
ing probability is effectively one. We take a = 1000,
b0 = 1980, and b = 2015. In Rougier et al. (2016), the
value b0 = 1980 was based on a kink in the cumula-
tive number of global large explosive eruptions. Figure 3
shows a marked thinning of M4–M5 eruptions in the
period 1950–1980 when compared to 1980–2015, and
more magnitude 4.0 eruptions since 1980.
One explanation for the difference between 1950–1980

and more recently is changes in the way that the magni-
tude of large eruptions is assessed. For eruptions which
have occurred since 1980, researchers have increasingly
made volume assessments soon after a large eruption,
before the distal deposits disappear due to erosion. For
earlier eruptions, volume assessments have been mostly
based on proximal tephra deposits, usually in conjunction
with a simple exponential thinning law (Pyle 2016). As dis-
cussed in Bonadonna et al. (1998), this pre-1980 practice
can underestimate the volume of eruptions which produce
a large amount of ash which is deposited at large distances
from the source.

We believe that this underestimation will particularly
affect eruptions in the magnitude range M4–M5. The
deposits from this smaller end of the spectrum of large-
magnitude eruptions will have the thinnest distal deposits
which are most easily and quickly eroded making the
bias strongest for pre-1980 deposits. Additionally, 1980
coincides with the growth in availability of data from
earth-observation satellites; for example, Landsat 1 was
launched in 1972. Finally, 1980 is also the year of the
Mount St Helens eruptions, which set a new standard for
rapid mapping of distal tephra deposits, and for track-
ing of ash-cloud behaviour using both ground-based radar
and satellites.

Recording probabilities by region. The posterior dis-
tributions of the recording probabilities are visualised in
Fig. 4, for those regions with at least ten large explo-
sive eruptions. The diversity of results across the regions
shows that much variation is concealed in a global
analysis. A detailed explanation of this Figure is given at
the end of the Appendix. Briefly, the grey polygons show
pointwise uncertainty (at a specific point in time), while
the solid line shows the recording probability function
with highest posterior probability density (the maximum
a posteriori or ‘MAP’ estimate). Where these two diverge,
this indicates that the joint distribution is extremely non-
Gaussian. In this case theMAP estimate, while still a help-
ful point estimate of the recording probability function,
should be treated with extra caution, because our usual
intuitions concerning uncertainty tend not to accommo-
date this type of behaviour.
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Fig. 3 Recorded large explosive eruptions since 1950. Eruptions withM ≥ 5.0 are named

Most of the panels in Fig. 4 show substantial posterior
uncertainty in recording probabilities back to 1000 CE,
which is a consequence of the low rate of large erup-
tions at the regional level. But the overall message is
clear: in ‘Mexico and Central America’, and ‘Iceland and
Arctic’, there is a small probability that the recording
probability has remained close to 1 back to 1000 CE,
but in all of the other regions it has almost certainly
fallen substantially. This small probability is an ‘empirical’
probability, which reflects social, cultural, and technical
changes only insofar as they are manifested in the record.
The substantial uncertainty suggests that point estimates,
including the MAP estimate shown in Fig. 4, are only
tentative.
Nevertheless, at a qualitative level these point esti-

mates do a good job of interpreting the recorded erup-
tions (shown as dots on the horizontal axis), consistently
with the narrative evidence. For example, the rise in
the recording probability in ‘Indonesia’ coincides with
the establishment and rapid growth of the Dutch East
India Company, which was chartered in 1602. At the risk
of over-interpreting, we suggest that the more gradual
increases in ‘Mexico and Central America’ and ‘South
America’ reflect not only the marked improvement in
recording in the 16th and 17th centuries related to
Spanish and Portuguese colonisation, but also the larger
amount of modern research in these regions into older
eruptions.
‘Iceland and Arctic’ is an interesting case, where we

expected a fairly complete record extending back to the
13th century, reflecting Viking colonisation and a rich
written history, notably in monasteries in medieval times.
This is not reflected in Fig. 4. However, as explained
to us by A. Höskuldsson (pers. comm.), many of the
Icelandic written records up to the mid-17th century
are missing for a variety of reasons, of which the two

most important are the shipwreck of Hannes Þorleif-
sson in the late 17th century, and the 1728 fire in
Copenhagen. This is a salutory reminder that for an
observation to appear in a modern database, the link
between the observer and the present day must not be
broken.

Global recording probability. Figure 5 reproduces the
global recording rate computed in Rougier et al. (2016),
which used only stratovolcanoes in the LaMEVE database,
and Fig. 6 shows the same algorithm applied to all volca-
noes in the LaMEVE database. This shows that the results
are similar in the two cases. The analysis in this paper uses
all volcanoes.
Figures 5 and 6 represent a top-down approach. In

this paper our approach is more ‘bottom up’, estimat-
ing recording probabilities and eruption rates separately
for each region. Treating the regions as independent,
these can be aggregated into a single global recording
probability using the formula given in Rougier et al.
(2016, sec. 2)

r(t) = λ1 r1(t) + · · · + λk rk(t)
λ1 + · · · + λk

, (1)

where there are k regions in total, and (λi, ri) are the large-
eruption rate and recording probability of the ith region.
Expectations of this function can be derived by combining
the MCMC samples for each of the regions, and the result
is given in Fig. 7. The 95% credible interval for the record-
ing probability at 1000CE is (15%, 34%), with a posterior
median of 24%.
In gross terms, the message in Fig. 7 is broadly similar

to the Frequentist analysis in Fig. 6: under-recording is a
very serious problem in the LaMEVE database, going back
1000 years. The lefthand end of the recording function
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Fig. 4 Recording probabilities by region. The two polygons show pointwise 95 and 50% credible regions, and the solid line shows themaximum a
posteriori estimate (see the Appendix for details of how this is calculated). The times of recorded large eruptions are shown as ticks on the horizontal
axis. Only regions with at least 10 recorded large eruptions are shown

is displaced upwards in the Bayesian regional assessment,
compared to the Frequentist global assessment. But there
are some differences in the definitions of the two uncer-
tainties. The error bars in Fig. 6 are conservative 95%
confidence intervals, so that the coverage of these inter-
vals is likely to exceed 95% in most of the parameter space.

By contrast, the vertical slices through the polygons in
Fig. 7 are exact 95% credible intervals.
The two statistical models are also different. The

Frequentist analysis uses a parsimonious model which
assumes ‘Poisson-ness’ at the global scale but not below.
The Bayesian analysis is less parsimonious (many more
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Fig. 5 Reproduced from Rougier et al. (2016), where it was Fig. 4 (p. 7). This Figure shows the global recording probability using only stratovolcanoes
in the LaMEVE database. The error bars represent conservative 95% confidence intervals, and the dashed and dotted lines represent alternative
point estimates, the Maximum Likelihood estimate and the centroid of the 50% confidence set. Compare with Fig. 6, which uses all volcanoes in the
LaMEVE database

parameters), under the stronger modelling assumption
of Poisson-ness at the regional scale. More parameters
and stronger modelling assumptions will typically result
in less uncertainty, but there is no guarantee, under dif-
ferent models, that the uncertainties will nest. This is

particularly the case in extremely non-Gaussian models
such as this one; see the Appendix for futher discussion.
Broadly speaking, it is extremely difficult to extract the
global or regional recording probability functions from
1000 years of data on large explosive eruptions, and this

Fig. 6 Similar to Fig. 5, but using all volcanoes in the LaMEVE database. Compare with Fig. 7, which is the result of aggregating a Bayesian treatment
at the regional level
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Fig. 7 The global recording probability, defined in (1). See the caption to Fig. 4 for details

difficulty extends to quantifying our uncertainty about the
functions we extract.
It is helpful to have a single value to summarize the

amount of under-recording in the last 1000 years; we use

average rate of recorded large explosive eruptions, 1000–2015
average rate were the recording probability to be 1 throughout

,

or, in the terms of the Appendix, R(u, v)/(b − a). This is
itself a random quantity, depending on (u, v), but we can
estimate its distribution from the MCMC samples; it is
59% ± 6% (mean ± 2sd). That is to say, we estimate that
roughly 40% of the large (M4+) explosive eruptions which
happened over the last 1000 years are missing from the
LaMEVE database.

Discussion
This paper confirms and extends the global analysis of
under-recording in the LaMEVE database over the last
millennium, presented in Rougier et al. (2016). Its primary
difference is to work ‘upwards’ from a separate analysis
for each region, thus allowing the regions to differ in their
recording probabilities and their rates of large explosive
eruptions. To support this, a second difference is to use a
Bayesian rather than a Frequentist approach, which allows
a more flexible representation of the recording probabil-
ity as a function of time, although at the cost of a more
complicated inferential calculation.
The outcome is to confirm the original finding that

recording probabilities in the LaMEVE database are sur-
prisingly low for 1000 years ago (best guess about 25%,
very probably less than 40%), and that they are very prob-
ably less than 100% even in the recent past, say the last

100 years (see Fig. 7). A new summary value arising from
this analysis is that about 40% of all large explosive erup-
tions are missing from the LaMEVE database, going back
1000 years. Clearly, we should be extremely cautious when
making risk assessments for large explosive eruptions
based on historical records.
The new contribution of this paper is to show that the

recording probabilities vary widely from one region to
another, but they are largely consistent with the narrative
evidence that associates increases in recording probabili-
ties with European colonial expansion, with Iceland being
an interesting but resolvable anomaly. The thick lines in
Fig. 4 serve as point estimates for regional recording prob-
abilities through time, but thesemust be usedwith caution
given the large uncertainties and extremely non-Gaussian
distributions.
Our quantification and our point estimates are only as

defensible as the statistical model we have used to derive
them. We assume that the rate of large explosive erup-
tions in a region is effectively constant over the last 1000
years, and that the occurrence of such eruptions in each
region follows a Poisson process (this need not be true
for individual volcanoes). This is a very common assump-
tion (see Rougier et al. 2016, for a detailed discussion),
and justified mainly in terms of the general scarcity of
large explosive eruptions, as a consequence of which we
do not have sufficient historical observations to justify fit-
ting a more complex model. An innovation is to use a
semi-parametric model for the recording probability as a
function of time, imposing only that (i) this function is
increasing in time, and (ii) it has been 100% since 1980.
Thismodel is capable of adapting to a wide range of shapes
(see Fig. 2), some of which are displayed in the regional
estimates shown in Fig. 4. For aggregation to the global
rate, we treat the processes in the regions as independent.
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Again, this assumption is made in the absence of evidence
to the contrary.

Appendix: statistical model andMCMC sampler
Let x = (x1, . . . , xn) denote the times of recorded large
eruptions in the interval (a, b), measured in years, let λ

denote the rate of large eruptions, with units of ‘year−1’,
and let r : (a, b) →[ 0, 1] denote the recording probabil-
ity of large eruptions as a function of time. The recording
probability is expressed as a deterministic function of
(u, v), where u = r(a) ∈[ 0, 1] and v = (v1, . . . , vm) are
knot locations satisfying

a < v1 < · · · < vm < b0 < b;

see Fig. 1.
The full model factorizes as

p(λ,u, v, x) = p(λ)p(u)p(v)p{x | λ, r(·;u, v)}, (2)

treating λ, u, and v as mutually independent. For the
marginal distributions, p(λ)=Gamma(α0=0.5,β0 = 20),
p(u) = U(0, 1), and p(v) is the distribution of the order
statistics of m IID U(a, b0) random variables. The like-
lihood function is that of a Poisson process with rate
function λ r(·;u, v),

p(x | λ, r) = exp{−λR(u, v)}
n∏

i=1
{λ r(xi;u, v)} , (3)

where R(u, v) = ∫ b
a r(t;u, v)dt; see Davison (2003, sec. 6.5)

for the derivation.
The recording probability is modelled as the piecewise

linear interpolant of m + 3 knots, subject to boundary
conditions:

r(t;u, v) = u + (1 − u) s(t; v)
= s(t; v) + u {1 − s(t; v)}, (4a)

where s is the piecewise linear interpolant of

(a, 0), (v1,�), (v2, 2�), . . . , (vm,m�), (b0, 1), (b, 1)
(4b)

and � = 1/(m + 1).
The specified quantity b0 is the time at which all large

eruptions are sure to be recorded (taken to be 1980 in this
paper). The value of S(v) = ∫ b

a s(t; v) dt can be evaluated
in closed form, from which

R(u, v) = u (b − a) + (1 − u) S(v)
= S(v) + u {(b − a) − S(v)}. (5)

In (4a) and (5) both versions of r and R are useful in the
factorisations below.
AMarkov Chain Monte Carlo (MCMC) sampler is used

to estimate expectations with respect to the posterior
distribution, p(λ,u, v | x). Gibbs proposals are used for

each of the three components, although only the first, λ,
has a recognisable full conditional distribution. The full
conditional for λ is

p(λ | u, v, x) ∝ p(λ)p(x | λ, r)
∝ exp{−β0 λ − λR(u, v)} λα0−1+n (6)

which is Gamma{α0 +n,β0 +R(u, v)}. Hence small values
of α0 and β0 are rapidly dominated by the observations.
The full conditional for u is

p(u | λ, v, x) ∝ p(u)p(x | λ, r)

= 1(0≤u≤1)exp{−λR(u, v)}
n∏

i=1
{λ r(xi;u, v)}

∝ 1(0 ≤ u ≤ 1) exp [−λu {(b − a) − S(v)}]

×
n∏

i=1
r(xi;u, v).

(7)

This non-standard distribution requires a Metropolis-
Hastings (MH) step. We use a slice sampler (Neal 2003,
algorithms in Figs. 3 and 5, K = ∞, w = 0.1).
The full conditional for v is

p(v | λ,u, x) ∝ p(v)p(x | λ, r)
∝ 1(a < v1 ≤ · · · ≤ vm ≤ b0)

× exp{−λ (1 − u) S(v)}
n∏

i=1
r(xi;u, v).

(8)

This non-standard distribution also requires a MH step.
We use a simple ‘pick and fling’ proposal, in which a
knot is picked uniformly at random and then relocated to
somewhere else in (a, b0) uniformly at random.
Burn-in for the MCMC sampler was assessed using

the Brooks-Gelman diagnostic; see Brooks and Gelman
(1998, sec. 3) and Lunn et al. (2013, sec. 4.4). This was
based on 8 parallel chains initialised independently from
the prior distribution p(λ,u, v). 2000 iterations were suf-
ficient for burn-in, and 5000 were used. The code for the
MCMC sampler was verified using the method of Cook
et al. (2006), based on 50 samples from the prior distribu-
tion. For each region, 8 parallel chains were run for 105
iterations each (after burn-in) to collect samples.

Visualization. The recording probability function r is a
scalar function (a, b) →[ 0, 1], constrained in the prior to
be increasing and to attain 1 at time b0 ≤ b. We visu-
alize this uncertain function in two ways. First, we show
the pointwise uncertainty for a specified time t ∈ (a, b),
i.e. the marginal posterior distribution of r(t). We use 50
and 95% equi-tailed credible intervals (CIs) for each t. For
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Fig. 8 A 2D margin of the recording probability function from the ‘Japan, Taiwan, Marianas’ region at around 1600 CE (see Fig. 4). This shows the
location of the marginal posterior distribution (opaque grey dots), the two 1D margins (on the axes), and the corresponding margin of the MAP
estimate (large black dot). The contour lines show 95% and 50% 2D credible regions. The dashed line represents the constraint that the recording
probabilities are increasing. Even though the 1D margins look quite bell-shaped, the constraint makes the joint distribution extremely non-Gaussian,
and for this reason the 2Dmargin of the MAP estimate need not correspond to the MAP estimates of the 1D or 2D margins, and does not in this case

example, the 50% CI comprises the interval between 25th
and 75th percentiles of the posterior distribution of r(t).
By applying this calculation for a regular grid of t val-
ues spanning (a, b) and joining the results together, we
can show the pointwise uncertainty as polygons with the
specified coverage.
However, the posterior distribution is extremely non-

Gaussian, owing to the monotonicity constraint on r,
which constrains the posterior distribution into a space
which, in high dimensions, is all corners. Therefore the
polygon of pointwise posterior distributions can fail to
convey the region of high posterior concentration, as rep-
resented by the mode. This is because, in general, the
mode does not marginalize—the Gaussian distribution is
a very special case where themode doesmarginalize. Con-
sider, for example, this tableau of probabilities for (x, y),
where each of x and y can take one of three values:

x1 x2 x3
y1 0.2 0.1 0 0.3
y2 0.1 0.15 0.15 0.4
y3 0.05 0.15 0.1 0.3

0.35 0.4 0.25 1.0

The modal value is (x1, y1), but the marginal modes are
x2 and y2. Thus the 1D margins of the mode (x1 and y1)
do not correspond to the modes of the 1D margins (x2
and y2).
We augment each plot with the maximum a posteriori

(MAP) estimate (i.e. the posterior mode) of the entire
recording probability function, estimated by the location
of the highest marginal posterior probability (after inte-
grating out λ) in the chains. This modal value need not
lie inside the polygons, for the reason given immedi-
ately above. To illustrate this, Fig. 8 shows a 2D mar-
gin from the ‘Japan, Taiwan, Marianas’ region at around
1600 CE, plus the corresponding values from the MAP
estimate.
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