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Abstract

Probabilistic quantification of lahar hazard is an important component of lahar risk assessment and mitigation. Here we
propose a new approach to probabilistic lahar hazard assessment through coupling a lahar susceptibility model with a
shallow-layer lahar flow model. Initial lahar volumes and their probabilities are quantified using the lahar susceptibility
model which establishes a relationship between the volume of mobilised sediment and exceedance probabilities from
rainfall intensity-frequency-duration curves. Rainfall-triggered lahar hazard zones can then be delineated probabilistically
by using the mobilised volumes as an input into lahar flow models. While the applicability of this model is limited to
rain-triggered lahars, this approach is able to reduce the reliance on historic and empirical estimates of lahar hazard and
creates an opportunity for the generation of purely quantitative probabilistic lahar hazard maps. The new approach is
demonstrated through the generation of probabilistic hazard maps for lahars originating from the Mangatoetoenui
Glacier, Ruapehu volcano, New Zealand.
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Lahars are among the most hazardous volcanic processes
and are responsible for a large proportion of volcanic
fatalities (Auker et al. 2013). Reliable information on the
likelihood of lahar occurrence and the resulting inunda-
tion area is critical for the mitigation of risks posed by
lahars (Pierson et al. 2014). Lahar hazard assessments typ-
ically provide this information in the form of hazard maps
quantifying the probability and extent of potential lahars
to varying degrees (Calder et al. 2015). In these assess-
ments, models that approximate lahar behaviour and/or
run-out are frequently used (e.g. Aguilera et al. 2004;
Carranza and Castro 2006; Darnell et al. 2013; Thouret et
al. 2013; Pistolesi et al. 2014; Córdoba et al. 2015). Com-
monly used models include Laharz (Iverson et al. 1998;
Schilling 2014), an empirical model relating lahar volume
to cross-sectional and planimetric inundation area; the
two-phase shallow layer model of Pitman and Le (2005)
implemented in the Titan2D toolkit (Pitman et al. 2003;
Patra et al. 2005); and single phase rheology approaches
such as Flo-2D and Delft3D, used in Caballero et al.

(2006) and Carrivick et al. (2009, 2010). Regardless of
methodology, the accuracy and output of these methods is
dependent on the value and accuracy of model inputs.
The initial lahar volume or volumetric flux is one such in-
put that determines initial lahar size and gravitational po-
tential energy. Since lahar size and energy transfer are
important factors controlling lahar behaviour and runout
(Lube et al. 2012), an accurate estimate of initial volume is
therefore crucial for accurate and reliable hazard footprint
estimates. Commonly, initial lahar volumes are estimated
from volumes of previous lahar events or rely on expert
judgement. However, historic data is often incomplete or
can be irrelevant under different environmental conditions
which limits probabilistic lahar hazard estimates.
Recently, Mead et al. (2016) presented a physically based

model for determining initial volumes of rain-triggered
lahars. Lahar susceptibility, defined as the probability of
an initial lahar volume at a specific location, was deter-
mined through assigning annual probabilities to lahar
volumes using rainfall intensity-frequency-duration (IFD)
curves. The potential of coupling lahar susceptibility
model outputs to lahar flow model inputs in order to
quantify lahar hazard probabilistically was discussed, but
not demonstrated. Here, the work of Mead et al. (2016) is
extended by coupling lahar susceptibility outputs to the
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two-phase shallow layer model of Pitman and Le (2005).
Outputs of the combined model in the form of probabilis-
tic hazard maps are demonstrated for lahar scenarios
originating from Mangatoetoenui Glacier, Mt. Ruapehu,
New Zealand. This work is intended to demonstrate an
approach for probabilistic estimates of lahar hazard and
highlight areas of research needed to enhance the reliabi-
lity of these hazard estimates.

Methods
The probabilistic lahar hazard approach proposed here
relies on the combination of two modelling methods.
Lahars are simulated as a two-phase flow using Titan2D
with initial volumes determined using the lahar suscepti-
bility model of Mead et al. (2016). Details of each
method are summarised below; for full details readers
are referred to Patra et al. (2005) and Pitman and Le
(2005) for the Titan2D toolkit and Mead et al. (2016) for
the rain-triggered lahar susceptibility model.

Rain-triggered lahar susceptibility
In the rain-triggered lahar susceptibility approach de-
scribed in Mead et al. (2016), lahar volumes are estimated
from deposit properties, rainfall intensity and rainfall dur-
ation using a combined shallow landslide and overland
erosion model. The total initial volume of the lahar is cal-
culated in the combined model as the sum of the material
mobilised through overland erosion and shallow landsli-
ding for a given rainfall intensity and duration. In the
overland erosion model, the height and motion of infiltra-
tion excess rainfall (i.e. net rainfall after infiltration into
the deposit) is simulated using a depth averaged shallow
water (SW) approximation. The entrainment of volcanic
sediment is calculated from the height and velocity of the
overland flow using the Meyer-Peter and Müller (MPM)
bedload transport model (see Castro Díaz et al. (2009)),
and the total volume of mobilised volcanic sediment is
calculated at the end of the rainfall duration. The volume
of volcanic material mobilised through shallow landsliding
is calculated using the approach developed by Iverson
(2000) where shallow slope failures are assumed to occur
when gravitational forces are greater or equal to the resis-
ting Coulomb stresses. In the Iverson (2000) model, resis-
ting stresses are reduced in proportion to the rainfall
infiltration rate (i.e. deposit permeability) and hydraulic
diffusivity, which controls the transmission of pore pres-
sure through the deposit. The depth, and consequently
volume, of the shallow failure is calculated at the end of
the rainfall duration. The probability of specific lahar
volumes can be estimated using this method through the
use of rainfall intensity-frequency-duration (IFD) tables.
These tables express the probability of rainfall intensities
occurring over a given duration and can be used to esti-
mate the occurrence probability of specific lahar volumes

being triggered by rainfall. These lahar volumes, when
used as an input in Titan2D, can then be used to express
lahar inundation in a probabilistic manner. Here, the
mobilised volume estimates and recurrence intervals cal-
culated in Mead et al. (2016) are used as the probabilistic
input for the lahar flow model.

Lahar flow modelling
The choice of lahar flow model can have a large effect on
the quality and reliability of probabilistic hazard estimates
and therefore needs to be considered in conjunction with
the needs of the hazard assessment. The prediction of
lahar flow is difficult due to complex physical processes
such as entrainment and deposition of sediment, changing
solid concentrations and flow transformations (e.g. Doyle
et al. 2009). While empirical models such as Laharz can
be used to estimate lahar inundation areas (Schilling
2014), numerical models are able to provide more infor-
mation (e.g. velocities and pressures) useful for estimating
the intensity of the hazard (McDougall 2016). A range of
numerical models have been used or proposed (e.g.
Pudasaini 2012) for lahar flow modelling; however, the
selection of numerical models and their parameters is
complicated by the lack of universal constitutive laws
governing lahar flow behaviour (McDougall 2016).
While input parameters for simple models that rely on

bulk measures of the lahar (e.g. internal and basal friction,
solid concentration) can be calibrated to previous lahar
flows, in practice, the complexity of lahar events mean the
calibration can only be optimised on one characteristic of
the lahar to the detriment of others. For example, a reduc-
tion of friction values to match long runout lahars will re-
sult in excessively mobile lahars with high momentum in
proximal (near source) zones. Recent, more advanced
models of two-phase flow (e.g. Pudasaini 2012; Iverson
and George 2014; Iverson and George 2016; Mergili et al.
2017) may improve predictions of lahar flow. However,
these models rely on a large array of input parameters that
are often not known or measurable a priori and, as yet, do
not demonstrate the ability to model transformations in
flow behaviour.
Probabilistic lahar hazard estimates are obtained

through the use of volume and location outputs from
the lahar susceptibility method as the input for lahar
flow models. Consequently, the flow modelling approach
can be chosen according to an assessment of modelling
capabilities needed to accurately simulate the lahar
hazard. To demonstrate this approach, we chose to use
the two-phase material model of Pitman and Le (2005)
to model lahar runout and dynamics. This model, imple-
mented in the Titan2D toolkit (Pitman et al. 2003; Patra
et al. 2005), simulates the flow of mixtures of soil, rock
and interstitial fluid (water) over natural terrains. The
main inputs required for this method is a digital
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elevation model (DEM), initial height and area of the
mixture (pile height) and basal and internal friction
values. The Pitman and Le (2005) model has previously
been applied to simulate lahars (e.g. Williams et al. 2008;
Procter et al. 2010; Córdoba et al. 2015). Crucially, this
model does not consider the effects of erosion, depos-
ition or transformation of the lahar and therefore will
not reproduce all features of a lahar. Consequently, sim-
ulations using this method will not exactly match the
outcomes of actual lahars, but will provide a probabilis-
tic guide to the lahar hazard. In order to couple the
susceptibility model material volumes to the inputs in
the Titan2D toolkit, the Titan2D code was modified to
add support for user defined pile heights in the form of
a geographical information system (GIS) raster file. The
modified source code is provided in the Zenodo reposi-
tory https://doi.org/10.5281/zenodo.153993.

Study area and simulation inputs
The process outlined in the previous section is demon-
strated through the generation of probabilistic hazard
maps for lahars originating from the Mangatoetoenui
Glacier, Ruapehu volcano, New Zealand. The Mangatoe-
toenui Glacier and Stream are located on the north-eastern
flank of Ruapehu volcano, draining eastwards into
Tongariro River (Fig. 1). A hydro-electric dam, trout fisher-
ies and several towns located along Tongariro River are at
risk from lahars originating on the north-eastern flanks of
the volcano (Cronin et al. 1997). In this study, deposit char-
acteristics are chosen to create a scenario with similar con-
ditions to those in Mangatoetoenui Stream prior to the
October 28, 1995 lahar described in Hodgson and Manville

(1999) and used in lahar susceptibility estimations by Mead
et al. (2016). The initial conditions in this study only con-
sider a limited range of initial volumes and solid volume
fractions, with all other inputs fixed, which means the gen-
erated hazard maps only represent a subset of the possible
parameter space. A complete hazard assessment would
consider the range of other inputs (such as basal and
internal friction), their uncertainty and model suitability
(Calder et al. 2015).
Lahar simulations for were run for 30 min of simula-

tion time using a 25 m resolution digital elevation model
(DEM) sourced from Landcare Research NZ (2010). The
DEM spanned the region from Mangatoetoenui Glacier
(see Fig. 1) in the west to the confluence of Mangatoe-
toenui Stream and Tongariro River in the east, and was
chosen because it best represented hydrological features
of the terrain, despite the lower resolution compared to
the contour-derived Land Information New Zealand
DEM (Stevens et al. 2003).
Mobilised material volumes in the source study area

were calculated for rainfall durations of 30 min, 2 h,
6 h, 12 h and 24 h at annual exceedance probabilities
(AEP) of 0.5 (2 years annual recurrence interval
(ARI)), 0.1 (10 years ARI), 0.02 (50 years ARI) and
0.01 (100 years ARI), using the susceptibility simula-
tions first presented in Mead et al. (2016). We as-
sumed most material is mobilised in a single event to
match the observations of Hodgson and Manville
(1999). GIS raster files of mobilised material depths
from the susceptibility simulations were used as the
pile height input in Titan2D. The internal friction
angle of the material was given as 32°, which is

Fig. 1 Study area overview showing Ruapehu volcano (left), round the mountain track (purple), Mangatoetoenui Glacier (circled) and the North
and South branches of Mangatoetoenui Stream (‘a’ and ‘b’ respectively)
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between the minimum and maximum material angles
of repose (Procter et al. 2010), basal friction was set
to 20° to represent a reasonably fluid granular
material.
In our simulations, the solids volume fraction of each

modelled lahar was computed from the volumes of mobi-
lised material and rainfall. The solid volume fraction was
estimated as the volume fraction of solids in the total vol-
ume of mobilised material and water. Volume fractions,
shown for each scenario in Table 1, decrease as ARI
increases since higher rainfall intensities result in propor-
tionally greater volumes of rainfall relative to the amount
of mobilised material.

Generation of probabilistic lahar hazard maps
Lahar hazard maps derived from overall annual exceed-
ance probabilities are shown in Fig. 2 for lahar height
thresholds of 0.5 and 0.1 m. While lahar properties such
as velocity and sediment concentration are also import-
ant to consider when evaluating overall lahar hazard,
height is used here to express the hazard due to its ease
in interpretation and use in delineation of hazard zones.
Overall exceedance probabilities were calculated from
simulated maximum lahar height at each grid cell using
the complementary function

1−p h≯xð Þ ð1Þ

where p(h ≯ x) is the probability of observing no lahar
heights (h) greater than the threshold height x, defined
using the formula of Tonini et al. (2016) as

p h≯xð Þ ¼
Y

i
1−pi h > xð Þ� � ð2Þ

where pi (h > x) is the probability of lahar heights
exceeding the threshold for each AEP value i (in this
instance i = 0.5, 0.1, 0.02, 0.01)

pi h > xð Þ ¼ i⋅p h > xð Þ ð3Þ

and p(h > x) is determined from the cumulative distribu-
tion of simulated lahar heights for each AEP.

Discussion and limitations
The deposit characteristics for this demonstration were
chosen to create a scenario similar to the tephra deposit
in the Mangatoetoenui Catchment prior to the October
28, 1995 lahars. A rainfall event (23 mm total in 24 h,
9 mm in one 6-h interval) triggered lahars in multiple
catchments of Ruapehu (Manville et al. 2000), including
the Mangatoetoenui catchment. The Mangatoetoenui
lahar, described in Hodgson and Manville (1999), trav-
elled downstream as a debris flow for the first 5 km (the
proximal zone) and then progressively transformed into
a hyperconcentrated flow between 5 and 9 km from the
source due to the entrainment of streamflow and
deposition of sediment. The lahar continued to dilute
downstream, eventually reaching the Tongariro River.
The lahar was confined to the Mangatoetoenui catch-
ment, although a small deposit was observed in a dis-
tributary valley of the Whangaehu catchment (Hodgson
and Manville 1999).
The similarities in initial conditions between the

October 28 lahar and simulations mean that the hazard
maps in Fig. 2 should show a reasonable degree of similar-
ity between the hazard outlines and observations of the
lahar. However; these hazard maps indicate that a large pro-
portion of the lahar source material enters the Whangaehu
catchment (shown in Fig. 2). Lahar heights also appear to
fall below 0.1 m downstream of the walking track encircling
Ruapehu (~8 km from source, purple line in Fig. 2). This dif-
fers from the extent of lahar deposits identified in Hodgson
and Manville (1999), but is close to the distance (9 km)
where flow fully transformed from a debris flow to hyper-
concentrated flow. Differences in the DEM representation
and initial deposit characteristics contribute to these
observed errors, but the main source of error is the lack of
representation of dilution, entrainment and flow transform-
ation processes in current numerical models. The friction
parameters used here provide a runout prediction
near to the transition to hyperconcentrated flow, but
also represent a highly mobile initial mass of material
that causes a large proportion of the lahar volume to
enter the Whangaehu catchment. This highlights the
current state of lahar models as a key limitation of
the proposed methodology and shows that operational
hazard maps generated using this approach would still
require expert guidance.
While differences in AEPs are visible in the vicinity of the

walking track, there is little difference in lahar extent be-
tween AEPs in upstream portions of the Mangatoetoenui
catchment (Fig. 2). This lack of difference can be attributed
to the deeply incised channel walls present in upper reaches
of Mangatoetoenui stream, but can also be caused by simi-
lar initial volumes of material being mobilised for all rainfall
ARIs (see Mead et al. (2016) for explanation). However, the
level of detail is limited in this demonstration as only 5

Table 1 Solid volume fractions of mobilised material for each
scenario at Mangatoetoenui Stream

ARI (y) AEP Duration

30 min 2 h 6 h 12 h 24 h

2 0.5 0.67 0.67 0.70 0.64 0.53

10 0.1 0.61 0.60 0.62 0.56 0.46

50 0.02 0.55 0.52 0.54 0.49 0.39

100 0.01 0.60 0.50 0.51 0.46 0.36
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rainfall duration scenarios are simulated for each rainfall
ARI, affecting the validity and resolution of the cumulative
distribution used to determine event AEP. A complete
hazard mapping exercise would need to sample the entire
spectrum of rainfall durations in order to increase the
resolution of the cumulative distribution.

Conclusion
The probabilistic lahar hazard maps generated here
by combining numerical modelling with initial vol-
umes determined through the susceptibility approach
of Mead et al. (2016) have demonstrated a potential
methodology for probabilistic hazard mapping of
lahars. However, through this demonstration, some

key limitations and simplifications have been identi-
fied that could affect the feasibility of this technique.
Importantly, lahar numerical modelling approaches re-
quire further research to develop advanced methods
capable of representing entrainment, deposition and
flow transformations typical of lahars. Recent and
ongoing research in this area (e.g. Pudasaini 2012;
Pudasaini and Krautblatter 2014; Iverson and George
2016) may, in the future, provide alternative mo-
delling approaches capable of accurately predicting
additional features of lahar flows. Another limitation
seen in this demonstration is the reduced parameter
space used to generate the hazard maps. A complete
lahar hazard assessment would need to quantify the

Fig. 2 Annual exceedance probabilities (AEP) for lahars exceeding 0.5 m and 0.1 m (bottom) in height
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range and uncertainty of all inputs into the model
(e.g. basal and internal frictions) in addition to simu-
lating a larger number of rainfall durations. However,
simulations spanning the entire range of input param-
eters increases the computational requirements of this
approach, which could impact on the feasibility of the
method for lahar hazard assessment.
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