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Abstract

Unrest at the Greek volcanic island of Santorini in 2011–2012 was a cause for unease for some governments,
concerned about risks to their nationals on this popular holiday island if an eruption took place. In support of
urgent response planning undertaken by the UK government, we developed a rapid evaluation of different
eruption scenario probabilities, using the Bayesian Belief Network (BBN) formulation for combining multiple strands
of scientific and observational evidence. Here we present three alternative BBN models that were devised in early
2012 for assessing the situation: (1) a basic static net for evaluating probabilities at any one moment in time, utilising
just four key unrest indicators; (2) a compound time-stepping net, extending the basic net to update probabilities
through time as the indicators changed; and (3) a more comprehensive net, with multiple lines of other data and
observations incorporated, reflecting diversity of modern multi-parameter monitoring techniques. A key conclusion is
that, even with just three or four basic indicators, it is not feasible, or defensible, to attempt to judge mentally the
implications of signs of unrest – a structured probabilistic procedure using Bayes’ Rule is a rational approach for
enumerating evidential strengths reliably. In the Santorini case, the unrest, and official anxiety, diminished quite
quickly and our approach was not progressed to the point where detailed consideration was given to BBN parameters,
analysis of data uncertainty or the elicitation of expert judgements for quantifying uncertainties to be used in the BBN.
Had this been done, the resulting scenario probabilities could have been adopted to determine likelihoods of volcanic
hazards and risks caused by possible eruptive activity, as identified in a concurrent assessment of the scale and
intensities of potential volcanic impacts (Jenkins et. al., Assessment of ash and gas hazard for future eruptions at
Santorini Volcano, Greece. forthcoming). Ideally, such hazard and risk assessments should be elaborated in detail
and critiqued well before crisis-level unrest develops – not initiated and implemented within a few hours just
when a situation looks ominous. In particular, careful analysis of all information is required to determine and
represent parameter uncertainties comprehensively and dependably.
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Background
In January 2011, there was a sharp increase in seismic
activity beneath the Kameni islands in the Santorini
caldera (Thera), and surface deformation was detected
that was interpreted as the inflation of a magmatic
source (Newman et al. 2012; Papoutsis et al. 2013). While
the most common presumption was that the unrest was
due to magmatic intrusion at shallow depth, it is also
plausible that it was a result of wider tectonic stresses,
and not simply or necessarily solely volcanic in origin.
If this possibility is ignored or discounted – something
that can easily happen, say, with volcanologists in crisis
mode focusing on their specialism – the corollary is that
volcanic hazard levels might be over-stated. Moreover,
assuming just the magmatic driver interpretation and
ignoring tectonic seismic hazard levels could be even
more dangerous: whereas volcanic activity would cause
severe disruption on the island and could entail several
casualties, a strong local earthquake might result in
hundreds of deaths and casualties. Thus the 2011–2012
seismic unrest situation at Santorini was one where
either one or both hazards could have developed (and
may still do so).
At the time, the geophysical unrest at Santorini was

a significant concern for some governments and the
European Community. They were worried about risks
to their nationals if a volcanic eruption took place,
and needed to plan to respond to ensure safety. The
principal challenge would be evacuating large numbers
of people from a small island with limited scope for
transportation and other logistic action, especially if
the local airfield was affected by ash. It was in this
context that volcanological advice was sought from a
number of scientists as part of official UK government
response planning activitiesa. This report outlines the
way in which the emerging evidence and data about
the unrest, which were uncertain and time-varying,
could be interrogated to provide provisional eruption
probability estimates for decision support. Because it
offers a rational evidence-based formalism, the Bayesian
Belief Network (BBN) formulation was chosen as an
appropriate conceptual tool for weighing the various
different strands of evidence and their specific diagnostic
powers as eruption precursors. Furthermore, the ways in
which all related uncertainties are characterized, assessed
and treated jointly – and how they change with time –
are, in effect, catalogued by the BBN; this record can be
scrutinized post hoc to gain insights into the evolution
of a natural hazard crisis and the cues that precursors
provide. The formalism is illustrated here for enumerating
probabilities of different volcanic hazard-initiating events
at Santorini by encompassing the varied – and sometimes
confounding – indications of unrest in the objective
framework of a BBN.
Quantitative multi-risk analysis using current method-
ologies presents many challenges (e.g. Kappes et al. 2012;
Marzocchi et al. 2012). For disaster officials, scenarios are
often perceived just in descriptive terms, sometimes relate
to one reference event type only (e.g. flood, earthquake,
windstorm or eruption) and rarely consider the possibility
of joint or cascaded hazard exposures and the associated
uncertainties, physical, scientific and logistical. In the
case of Santorini, the basis and provisional findings of a
counterpart appraisal of short-term earthquake risk, under-
taken for the UK government at the same time as the
volcanic eruption assessment, will be presented elsewhere.
Here we focus on the eruption assessment challenge.

Methods – Bayesian belief networks
Bayesian Belief Networks (also called Bayes nets or causal
networks) are increasingly being used in natural hazards
work as a method for reasoning about causal influences
under conditions of observational uncertainty and for mod-
elling uncertain domain states and conditions. BBNs were
pioneered in medical decision support systems (Spiegelhalter
et al. 1993) and are finding growing application for insur-
ance and operational risks (e.g. Neil et al. 2005; Cowell
et al. 2007), in environmental modelling (Aguilera et al.
2011), and in determining the value of scientific informa-
tion for climate change assessment (Kousky and Cooke
2012). The principles of the BBN concept are not outlined
here, but can be found in the literature (e.g. Darwiche 2009;
Jensen et al. 2010; Fenton and Neil 2012) – the key appeal
of a BBN is that it implements Bayes’ Rule and executes all
the necessary, and numerically non-trivial, calculations
within an intuitive graphical construct.
BBN graphs are a direct visual representation of states

of the world, not of reasoning processes in the sense of
artificial intelligence; participating elements (processes,
factors) are identified as nodes, joined where valid by
directed arcs (arrows) denoting real causal connections.
However, arc arrowheads on a BBN do not show the
direction of flow of information during reasoning (as in
neural networks or rule-based systems), because informa-
tion can be propagated both forwards and backwards. In
the present case, we design our BBN to reason in prob-
ability terms backwards from observations of unrest – that
is, from information which we can acquire about effects –
to the fundamental cause, i.e. a volcano’s eruptive state or
condition, the controlling factor or property of interest
which cannot be measured directly.
Another important attribute of the BBN for volcanic

hazards assessment is the capability it offers to include
expert judgements in the evidential mix, together with
observational data, empirical relationships or model out-
comes (e.g. Hincks, 2007; Hincks et al. 2014). Moreover,
the BBN has the property that it can incorporate negative
evidence (e.g. a cessation of gas flux), and can account for
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situations where information is only partially complete
(e.g. when an instrumental data stream drops out).
The flexible structure and unique modelling techniques

offered by a Bayesian network makes it possible to analyse
hazards in full probabilistic terms, capturing interactions
between geophysical variables and associated uncertain-
ties. This is especially valuable where substantial elements
of scientific judgement are involved, as, almost invariably,
they are with natural hazards. In particular, the method-
ology is well suited for treating uncertainties associated
with internal volcanic processes, not accessible for direct
measurement from the Earth’s surface. Inferences about
internal system states and probabilities of consequent haz-
ard events can be updated rationally, and proportionately,
on the basis of new observations or new information.
In the present case, quantitative scenario modelling

using a Bayesian network has several important features:

(1) It is probabilistic, rather than deterministic –
unavoidable uncertainties in the parameters and
their inter-relationships can be represented by
probability distributions.

(2) Physical models, statistical data and expert
judgement all can be incorporated jointly with the
Bayesian network.

(3) A large number of parameters and their
inter-relationships can be considered in a systematic
way with the network.

(4) The probabilities of one parameter can be updated
via added information, while a change in one
parameter will influence others in the network
through the defined causal inter-relationships.

The principles behind Bayes’ Rule – as an applicable lo-
gical precept for weighing evidence for hazard assessment
under uncertainty and as the basis for BBN calculations –
were introduced into volcanology by Newhall and Hoblitt
(2002), and further elaborated by Aspinall et al. (2003,
2006); a BBN framework has been used in a retrospective
analysis of the 1976 Guadeloupe volcano crisis episode
(Hincks et al. 2014). Complementary approaches for char-
acterizing eruption scenario probabilities include logic or
event trees (e.g. Newhall and Hoblitt 2002; Marzocchi
et al. 2004, 2008; Sobradelo and Marti 2010) – these are
generally designed to capture a sequence of events and
observations rather than describe primary physical, petro-
logical and geochemical states and make inferences about
process interactions and conditions. However, the basic
probability calculus is largely the same.

Inferring potential volcanic activity scenario probabilities
from unrest observations: Santorini 2011–2012
We now illustrate some of the ways the BBN formulation
can be used in situations of suspected volcanic unrest to
evaluate multiple strands of observational evidence and
data with the purpose of inferring relative probabilities
for different potential eruption scenarios or, indeed, for
an outcome of no eruption. We use the case of the
2011–2012 unrest at Santorini as a basis for demonstration
with the Netica package (NorsysSoftware Corp. 2014); how-
ever, all values and probabilities reproduced in what follows
were chosen as provisional indicative numbers – had the
crisis escalated further these would have been subjected to
detailed expert appraisal and modulation.
In brief, there was an increase in local seismicity within

the Thera caldera in early 2011, accompanied by inflationary
deformation centred in the caldera, with seismicity escalating
and inflation increasing over subsequent months (e.g.
Newman et al. 2012; Feuillet 2013; Papoutsis et al. 2013).
Other narrative signs of unrest, such as unusual bubbling in
the water and a temperature rise, were also reported. By the
end of 2011 into early 2012, levels of activity were sufficiently
strong to cause scientific and official concern about the
possibility of a volcanic eruption ensuing in the near future.
Here we present three variants of our BBN model,

configured for the Santorini situation: (1) a basic net for
evaluating eruption probabilities at one moment in time,
utilising four traditional key indicators for unrest due to
volcanic activity; (2) the same basic net, extended to illus-
trate how eruption probabilities can be updated through
time as these indicators change; and (3) a more complex
single instant net, in which multiple lines of other data are
added to reflect the diversity and differential evidential
worth of modern monitoring techniques.

Basic BBN for Santorini 2011–2012
In the discussion that follows, illustrative parameters and
values are used in the BBNs. These were chosen by one of
us (WPA), in extreme haste over a few hours, for the
purposes of providing indicative eruption probabilities in
support of urgent advice required by the UK government.
Whilst the parameters are, in volcanological terms, in-
formed up to a point, they were nevertheless decided
without the benefit of detailed factual investigation, data
analysis or wider expert inputs, so the numerical aspects
of our BBNs should be viewed in this light.
Figure 1 shows an elementary four observables BBN

constructed for the Santorini crisis, compiled originally in
January 2012 when concern about eruption potential was
high. The top level target node Santorini_eruption_probs
comprises four alternative possible ‘class scenarios’, each
carrying very different implications for mitigating and
responding to related hazards. The four classes are labelled:
Non magmatic, Failed intrusion, Lava flow or dome 1st
and Explosion 1st.
The latter two eruption types were chosen as separate

reference classes, guided by the knowledge (e.g. Siebert
et al. 2010) that Santorini volcano has, in the past,



Santorini_eruption_probs

Non magmatic
Failed Intrusion
LavaFlow or Dome 1st
Explosion 1st

98.0
0.50
1.40
0.10

LP_Hybrid_Tremor

Present
Absent

3.33
96.7

Inflation

Positive
Neutral
Negative

17.0
67.3
15.7

DC_seismicity

Elevated
Background

21.5
78.5

Gas

Magmatic imprint
Uncertain
Hydrothermal

3.23
29.9
66.9

Figure 1 Bayesian Belief Network for Santorini, using Netica
(Norsys Software Corp. 2014): a base-rate (prior) net with four
parameters, before unrest nodes are instantiated with current
observations (note: summed probability values on BBN graphic
may lose precision due to display rounding).

Table 1 Kameni Isl. eruption interval data (from Table 1
of Pyle and Elliott (2006)

Dates Inter-eruption interval (to next) [yrs]

1950 (see text) 62 (i.e. > 61)

1939 – 41 9

1928 (ignored, see text) -

1925 – 26 13

1866 – 70 55

1707 – 11 155

1570/73 134
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exhibited two distinct eruptive styles: small, effusive
eruptions, which occur relatively frequently and build
shields and domes of lava; and large explosive eruptions
that occur rarely, at intervals of 10,000–30,000 years.
In order to parameterize the BBN, our first task was

to pull together available evidence to provide a basis
for quantifying the long-term base rate of eruptions of
Santorini. For the purposes of the BBN assessment, we
defined an “imminent eruption” as meaning one that
could occur during the (then) calendar year 2012 (our
analysis being performed close to the start of that year).
For data on recurrence intervals we turned to the work of
Pyle and Elliott (2006) on the evolution of the Kameni
Islands volcano, and summarise recent eruption intervals
from their paper on Table 1.
Following Pyle and Elliott, we presumed that the 1928

event listed on Table 1 could be treated as a continuation
of the activity dated 1925–26. The 1950 eruption is
regarded by Pyle and Elliott as anomalous in terms of
eruption duration as a function of inter-eruption interval
(their figure sixteen); we retained it here because an alterna-
tive view on their figure sixteen is that a duration/interval
relationship curve should intercept close to zero duration
for inter-eruption intervals tending towards zero. From these
data, the mean interval for a Poisson process is ~ 70 years.
This suggests a “base rate” annual probability of eruption
in any one year of about 2%, in the absence of other
information.
If the memory-less Poisson assumption is questionable

for this history, alternative distributions can be suggested.
For instance, notwithstanding the relative paucity of data,
lognormal distributions can be found that offer plausible
alternative fits to the inter-eruption intervals from 1570/
73 onwards, as shown on Figure 2 [interval data are
binned into 20 yr counts, centred at 10, 30, 50 …..150,
170 years]. Three lognormal PDFs are shown which
have mean and variance parameters chosen so that the
trio span a range of possible representative choices, the
purpose being simply to illustrate associated uncertainty.
Using Mathcad v11 functions DLNORM and Linfit
(Mathsoft 2003), resulting correlation coefficients indicate
elementary – and varying – measures of goodness-of-fit
for these three choices, i.e. corr. coeff. f1 = 0.7; f2 = 0.85;
f3 = 0.3, respectively. The DLNORM function f2, with
mean = 4.5 and s.d. = 1.42, is the best of these three
(broken/dashed black line on Figure 2).
Corresponding lognormal interval survivor functions for

the three distributions, given the present (i.e. at 2012)
interval had lasted 62 years, are shown on Figure 3.
Given the current inter-eruption interval was already of

62 years duration at 2012 and that a lognormal distribu-
tion is representative of recurrence behaviour, the curves
on Figure 3 suggest:

~ 0.6% chance of eruption in the year
~ 3% chance of eruption in the next 5 years
~ 10 – 13% chance of eruption in the next 20 years

On this basis, the conditional probability of an eruption
in the calendar year 2012 was lower by a factor of about 3,
compared to the corresponding memory-less Poisson
process probability, mentioned above. For caution, the
higher value is adopted for our BBN analysis, with the
alternative estimate held in reserve for sensitivity tests
or margin of safety analysis.
In the light of experience in Guadeloupe in 1976 (see

Hincks et al. 2014 for a recent discussion in the context of



Figure 2 Santorini inter-eruption intervals: three selected lognormal PDFs are shown, chosen to span approximately the uncertainty
range of plausible fits to Table 1 data (calculations with MathCad 11 – Mathsoft 2003).
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hazard assessment), we also included a Failed intrusion
scenario to express the possibility that even an episode of
intense and prolonged unrest may not culminate in an
eruption; while this follows the terminology of Hincks
et al. (2014), ‘failed eruption’ would be an equally apt
label for this scenario. Failed intrusion/eruption episodes
represent a major challenge for civil protection decision
making.
Moran et al. (2011) present a valuable summary of the

diverse spectrum of states of unrest that can accompany
a failed eruption. However, they were unable to offer any
quantitative hint of how often such stillborn eruptions
are the outcome of significant episodes of unrest at volca-
noes generally, and there is no basis at all for assessing the
probability of this scenario for Santorini. For argument’s
Figure 3 Lognormal survivor functions corresponding to the three PD
event (t1).
sake, we assumed that there was perhaps a 1-in-10 chance
that the unrest episode at Santorini 2011–2012 was lead-
ing towards a failed eruption. This would have the effect
of reducing the probabilities for eruption scenarios,
derived above, by about 10%. There is no way of knowing
whether this over- or understated failed eruption likeli-
hood, but it did not change substantially the eruption
probability evaluations used on the BBN.
Our hurried data compilation for parameters to plug

in to the BBN did not address the question of the “size”
of any incipient eruption. In principle, and for a more
comprehensive appraisal, the eruptive classes on the
target node could be subdivided by some suitable metric
of eruption size. Pyle and Elliott (2006) suggested that,
following a pause of about 60 years, the next lava flow
Fs shown in Figure 2, conditioned on 62 years interval since last
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eruption duration might be expected to be similar to
that of the 1925 – 1928 event (i.e. effusive extrusion,
perhaps lasting many months or a few years).
Whereas eruption size is not a variable, implicit in

this probabilistic formulation is some time window for
occurrence of the first next event: again, just for illus-
tration, we assumed one year ahead was appropriate on
the basis that historical data for Santorini allow us to
estimate base-rate annual probabilities of event occurrence
on this timescale (n.b. the state labelled Non magmatic
covers all other non-magmatic causes of unrest or surface
manifestations, in the chosen interval). The following base-
rates on Table 2 were adopted as prior probabilities in the
BBN top target node.
In any random year – without additional monitoring

information – there would be about a 2% chance of
eruptive activity. Here we assumed a lava flow or dome-
forming eruption to be three times more likely than a
failed intrusion episode; the latter, in turn, was enumer-
ated five times more likely than an explosion being the
first new eruptive action. This leaves a balance prior prob-
ability of 98% that no magmatic eruptive activity ensues in
the following 12 months.
Although often overlooked when unrest near a volcano

is being informally assessed, it is essential to include an
outcome such as “Nothing happens” (here Non magmatic).
The possibility will always exist that the signs of unrest are
generated by some cause other than incipient eruptive/
intrusive magmatic movement or pressurization (see
Conclusions and discussion, below).
Posterior probabilities on the target node are calcu-

lated by “instantiating” some or all the observation
nodes upon acquiring new observations or data – i.e. the
target priors are updated through the acquisition of
“new” evidential information. Four basic observational
monitoring nodes are included in the BBN: DC_seismi-
city; LP_Hybrid_Tremor; Inflation, and Gas. The node
DC_seismicity stands for double-couple (i.e. rock stress
failure) earthquakes, which may be either pure tectonic
type or volcano-tectonic, depending upon the causal
process. Where both tectonic and volcanic processes are
possible causes, the nature of observed DC quakes can be
ambiguous. The node labelled LP_Hybrid_Tremor encap-
sulates (non-double-couple) Long Period, Hybrid seismic
events and volcanic tremor, all of which conventionally
Table 2 Base rate probabilities for alternative states of
Node: Santorini_eruption_probs (Figure 1)

State Santorini_eruption_probs

Failed_Intrusion 0.5%

LavaFlow_or_Dome_1st 1.4%

Explosion_1st 0.1%

Non_magmatic 98%
are interpreted – if observed close to or under a vol-
cano – as indicators of magmatic fluid or gas movement.
Inflation captures the notion of ground deformation
uplift due either to magma movement or pressurization, or
to tectonic fault processes – another potentially ambiguous
sign. The node Gas represents the detection, or non-
detection, of gas flux or gases with a magmatic imprint.
Before the eruption scenario probabilities can be cal-

culated, however, a conditional probability table (CPT,
sometimes “contingency table”) needs to be enumerated
for each observational node. This involves quantifying
the full matrix of probabilities for the particular unrest
signs being present or absent, conditional on each of the
volcanic states being true (n.b. inference of the latter
states is unavoidable because they cannot be observed or
determined independently).
Values inserted in the CPT can come from the statistics

of historical precedents at the subject volcano – more
commonly with additional guidance from other similar
volcanoes – with derived conditional probabilities usually
moderated by expert judgement. The example of the
LP_Hybrid_Tremor node CPT, with illustrative probabil-
ity values, is shown in Figure 4.
An alternative set of conditions are depicted in Figure 5,

where the four observation nodes are each instantiated to
their null or negative evidence node state: these states
are labelled Background, Absent, Neutral and Uncertain,
respectively; once instantiated, the eruption scenario prob-
abilities on the main node are updated accordingly. N.b. the
Netica BBN display shows rounded probabilities; precise
values are tabulated against the corresponding node state
selections (Table 3).
At the other extreme, Figure 6 shows the same basic

BBN instantiated this time with all observational nodes
set to their positive states. This very strong, joint evidence
for the existence of volcanic unrest engenders significant
changes in the eruption scenario probabilities: on this evi-
dence, if activity continues there is perhaps a 77% chance
Figure 4 Prior Conditional Probability Table (CPT) for one
BBN node.



Santorini_eruption_probs

Non magmatic
Failed Intrusion
LavaFlow or Dome 1st
Explosion 1st

 100
.012
.005
 0 +

LP_Hybrid_Tremor

Present
Absent

   0
 100

Inflation

Positive
Neutral
Negative

   0
 100
   0

DC_seismicity

Elevated
Background

   0
 100

Gas

Magmatic imprint
Uncertain
Hydrothermal

   0
 100
   0

Figure 5 Santorini BBN with all observations nodes instantiated
to null or negative states.

Aspinall and Woo Journal of Applied Volcanology 2014, 3:12 Page 7 of 12
http://www.appliedvolc.com/content/3/1/12
in the following twelve months of a lava flow or dome-
forming event, and a smaller but not-insignificant prob-
ability of an explosion. A failed intrusion episode (similar
to Guadeloupe 1976) is also a real possibility: from the
CPT values deployed here, this scenario is evaluated twice
as likely as an explosion.
It should be borne in mind that a BBN analysis such

as this should serve to inform wider decision judgements
about eruptive potential – because of inevitable limitations
in characterizing a complex dynamic volcano system,
precise numerical inferences should not be relied on as
absolute operational decisions on their own.
Table 3 BBN evaluated eruption probabilities for instantiated

Observation node State instantiated (selected = 1

Gas Magmatic_imprint

0

Inflation Positive

0

DC_seismicity Elevated

0

LP_Hybrid_Tremor Present

0

Corresponding probabilities for Node: Santorini_eruption_probs

Non_magmatic Failed_Intrusion

99.98% 0.012%
A time–stepping BBN
Of course, geophysical unrest – whether volcanic or
seismic – is never static; levels and trends in the different
indicators of unrest can and will change with time. As a
consequence, inferences about the eruptive potential of a
volcano system will shift as unrest progresses. Coherent,
and auditable, tracking of time-evolving hazard levels is
desirable, but this is a significant challenge, even with
the assistance of a Dynamic Bayesian Network (DBN).
Whereas a static BBN describes the state of a system
without using information about its prior history, a
DBN can incorporate crucial information about system
evolution – in which the state of the volcano at any
time is dependent on any number of past states – by
relating variables to each other over subsequent time
steps and modelling temporal relationships between nodes
(e.g. Jensen et al. 2010). The order of such a model is the
length of history, or ‘memory’ of the process(es) concerned.
Setting up a comprehensive DBN is, however, a non-

trivial undertaking so, in the situation for Santorini
where speed was important, we implemented a trade-off
solution: ‘a time-stepping BBN’, giving us modelling
inference capabilities somewhere between those of a static
BBN and those of a DBN. Taking the BBN example from
the previous section, Figure 7 shows one way this could
be set up for an unrest episode with four basic data
streams, such as that at Santorini: after an initial assess-
ment, two time-step updates are illustrated, identifying
trends or trend changes in the unrest indicators. The
time-step is not defined in this illustration, but typically
could be on a scale of days, weeks or months, depending
upon circumstances. Enumerating the conditional prob-
abilities for the CPTs in such a BBN is a major task, and
developing a time-stepping BBN for operational applica-
tion requires much thought and work. Figures 8 and 9
depict two hypothetical sets of update instantiations
(nodes shaded green), showing indicatively how changes
in calculated eruption probabilities might unfold with time
node states on Figure 5 (values on figure are rounded)

)

Uncertain Hydrothermal

1 0

Neutral Negative

1 0

Background

1

Absent

1

LavaFlow_or_Dome_1st Explosion_1st

5.5 × 10−3% 3.× 10−5%



Santorini_eruption_probs

Non magmatic
Failed Intrusion
LavaFlow or Dome 1st
Explosion 1st

0.19
15.9
76.6
7.31

LP_Hybrid_Tremor

Present
Absent

 100
   0

Inflation

Positive
Neutral
Negative

 100
   0
   0

DC_seismicity

Elevated
Background

 100
   0

Gas

Magmatic imprint
Uncertain
Hydrothermal

 100
   0
   0

Figure 6 Santorini BBN with all observation nodes instantiated
to positive states.

Figure 7 A specimen time-stepping BBN for Santorini unrest, with fou
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and changing unrest indications. If a full DBN can be im-
plemented, the possibilities and degrees of sophistication
that can be achieved are almost limitless.

Extending the BBN for additional datastreams
The preceding examples illustrated BBN applications when
there are just four unrest symptoms. Modern volcano mon-
itoring can entail multi-parameter diagnostics, including
different techniques for measuring the same fundamental
variable (e.g. deformation gauged simultaneously with GPS
and InSAR). Nowadays, the number of such indicators eas-
ily exceeds any feasible chance of assimilating mentally
all strands of evidence and inferring the implications
for hazard level without the assistance of a structured
procedure. An example of what might be involved is
shown in Figure 10, with instantiated nodes shaded pink
(n.b. not all such monitoring techniques were deployed at
Santorini, and data were not necessarily available from
others as BBN entries).
Even with all fifteen of these indicative nodes and

compound CPT relationships, this is a substantial but
still tractable BBN. Note that this model exemplifies an
extension of the conversation to secondary indicators,
such as Sea_temp and Sea_state, in relation to which
observations of above ambient temperature or of bubbling
are presumed to be evidence of elevated (submarine) gas
output.
r evidence streams.



Figure 8 Time-stepping Santorini BBN, with two time steps hypothetically instantiated in sequence (rows 2 – 5, first two column sets);
note changes to probabilities on all target nodes (upper row), forwards and backwards.
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In this example a node Felt_quakes is also included,
with discrete enumerated states quantified in terms of
number of events in a given time in specified ranges.
This contrasts with the other nodes, which simply express
more qualitative categorical states. The reason for includ-
ing such a node here is to exemplify how one particular
manifestation of volcanic unrest can be construed to make
it is coherent with older, pre-instrumental historical infor-
mation. The latter data can provide valuable and robust
benchmark rates of occurrence from previous eruptions
and episodes of unrest at this or other volcanoes, and
could be invaluable diagnostic information which, other-
wise, cannot be easily included in the eruption scenario
probability calculations.
One particular strength of the BBN approach, not illus-

trated by Figure 10, is what happens if observational data
becomes unavailable due to instrument loss or is incom-
pletely reported due to technical difficulties. In this case,
the Bayes’ Rule formulation offers a powerful means for
handling missing data, which can be regarded in a BBN
model in just the same way as an unknown or latent
variable. For instance, if the Felt_quakes node is not
instantiated, then the BBN will calculate the expected
mean rate of felt earthquakes and an estimate of the
statistical spread about this rate, given the states of all
other nodes in the network. This is possible because a
BBN can be parameterized with generic or analogue rela-
tionships between all pairs of variables, and instantiating
any node forces a recalculation of any un-instantiated
dependent node through the conditional probability rela-
tionships. In this way a BBN can elegantly handle missing
values in prior distributions by inference from other par-
ameter findings – an extensive literature expounds the
principles (e.g. Daniels and Hogan 2008 is a recent text).

Linking eruption scenario probabilities to ash and
gas hazards
As just described, the BBN approach provides a transpar-
ent framework for deriving eruption scenario probabilities
which can be used then as initiating likelihoods for quanti-
tative assessments of contingent hazards and risks. For
instance, stochastic models of ash and gas hazard are
available to describe the dispersal of ash and SO2 during
an eruption with defined source parameters; such models
were utilized by Jenkins et al. (Assessment of ash and gas
hazard for future eruptions at Santorini Volcano, Greece.
forthcoming) for the Santorini case. In terms of ashfall
hazards, two alternative scenarios might be adopted as the
most likely or expected eruptions, based on an understand-
ing of explosive activity during historic eruptions (e.g. Parks
et al. 2012): these eruptions can be characterized by slow
lava extrusion over periods of 2 to 4 years with weak but



Figure 10 Extending the basic Santorini BBN of Figure 1 to incorporate additional streams of observational evidence and data.

Figure 9 Time-stepping Santorini BBN, instantiated over three time steps – note further backwards changes to eruption scenario
probabilities in upper nodes, in relation to values on Figures 7, 8.
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persistent explosions and ash venting. A third, more ex-
treme, scenario is a sub-Plinian explosive eruption which,
although one has not happened since 1650 AD, is com-
monplace in the geological record of Thera. For crisis re-
sponse purposes, this latter scenario might be regarded as a
“worst considered case”.
Outputs from such dispersion models take the form of

probabilistic maps and exceedance probability curves
for key locations (Jenkins et. al., Assessment of ash and
gas hazard for future eruptions at Santorini Volcano,
Greece. forthcoming). Those findings can be conditioned
on the initiating eruption probability, as determined by
the eruption BBN analysis approach described here, and
on eruption style, intensity, duration and other factors.

Conclusions and discussion
A key conclusion from this exercise, and from experience
with BBNs at other volcanoes (e.g. Wadge and Aspinall
2014), is that even with just three or four basic observa-
tion indicators, it is not feasible or defensible to attempt
to judge mentally the implications of unrest signs for
hazard assessment purposes – rational enumeration
using Bayes’ Rule is essential for reliable estimation of
probabilities in the presence of uncertainty. The struc-
tured graphical procedure afforded by the BBN technique
offers an efficient and tractable way to manage the prob-
lem. Once this step is taken, the efficiency of a BBN means
there is a compelling argument to extend it to incorporate
all strands of evidence, thus maximizing diagnostic power
for supporting decision preparedness. That said, a volcanic
hazard assessment, such as that needed by civil protection
authorities for such situations as Santorini, should, if
possible, be elaborated in detail before significant unrest
develops and with the involvement of as many know-
ledgeable experts as can be mustered for elicitation and
BBN model definition and parameterization.
Although the BBN approach outlined above was devel-

oped urgently during the period of heightened official con-
cern in the recent Santorini unrest, the various eruption
scenario probabilities that were obtained – conditional
on the enumeration of different strands of observational
evidence by one person (WPA) – serve to demonstrate
the importance of considering not only positive pieces of
(volcanic) evidence but also negative evidence, alternative
hypotheses, and null outcomes. For instance, at the time
of the 2011–2012 unrest it was not abundantly certain
that the caldera earthquakes and uplift were due solely to
magmatic changes or movements – there may have been
a strong tectonic element involved, perhaps even exclu-
sively tectonic. Thus while the unrest that was centered in
the Thera caldera might have been the result of volcano-
tectonic interactions (e.g. Feuillet 2013), it is also plausible
that it was due to wider tectonic stresses, not simply or
necessarily volcanic in origin. Local earthquake hazard
lies outside the scope of the present discussion, but if
the possibility of a seismotectonic cause is ignored or
discounted – something that can easily happen with
volcanologists focusing on their specialism in a geophys-
ical crisis – the corollary is that perceptions of volcanic
risk and related implications may be inflated. Indeed, not
recognizing the possibility that short-term seismic hazard
levels could have been elevated at the time of unrest might
be more disastrous: whereas volcanic activity might cause
some disruption and several casualties, at worst, a signifi-
cant local earthquake or earthquake sequence could be
the cause of a major casualty toll on Santorini (a counter-
part analysis will be reported elsewhere).
Although constructing a BBN for the different possibilities

does not guarantee all pitfalls can be avoided, the danger
of misstating hazards and risks is greatly reduced if a struc-
tured and comprehensive approach is taken to quantifica-
tion of all forms of potential natural hazards. Given what
has happened to scientific advisers recently in relation
to the 2009 L’Aquila, Italy, earthquake disaster (Editorial,
Nature Geoscience 2013), a rational framework for asses-
sing uncertain scientific evidence in unrest circumstances
surely now must be a sine qua non for Earth scientists in-
volved in hazard and risk assessment work (Aspinall 2011).
In the present case, the way in which the volcanic haz-

ard situation at Santorini was evaluated urgently using
BBNs is not held up as an exemplar of how such an as-
sessment should be done in all circumstances; however it
may provide helpful insights into formalized probabilistic
methods for handling uncertain data and information
under crisis conditions.
Endnote
aIn connection with the 2011–2012 Santorini unrest

situation, acquisition of scientific advice for official pur-
poses was led by the Chief Scientific Adviser to the UK
Government, through his Scientific Advisory Group for
Emergencies (SAGE). Ministries and departments of
government that had need of this advice included the
Government Office of Science, the Foreign and Com-
monwealth Office, the Cabinet Office, the Home Office,
Departments of Health, Defence and Transport, and
other related agencies and organizations.
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