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Abstract

This paper presents a new tool, AshCalc, for the comparison of the three most commonly used models for the
calculation of the bulk volume of volcanic tephra fall deposits: the exponential model, the power law model and
the Weibull model. AshCalc provides a simple and intuitive tool to speed up the analysis of tephra deposits and
compare and contrast the fits for each model. Two improvements in terms of computational performance are
implemented in AshCalc for the estimation of the parameters for the Weibull model. The first is an analytic method for
reducing the number of free parameters, whilst the second exaggerates the minima in parameter space, leading to a
more robust solution. We show that AshCalc provides volume estimates in line with other previously published
estimates and hence can be used with a high degree of confidence. We include the open source python code for
Ashcalc with the intention that it can be used both as a stand-alone program and integrated into other python projects.
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Introduction
Studying the variation in thickness of tephra fall deposits
has long been used as a key tool for estimating the vol-
umes of explosive volcanic eruptions (Pyle, 1989). How-
ever, as yet, there is no agreement on the most appropriate
model that can be integrated to yield a total bulk volume
on the basis of sparse field measurements. Most ap-
proaches currently fit isopachs (contours of equal thick-
ness) to field measurements of deposit thickness, and then
use the thickness–area relationships to derive a volume.
Using a symmetrical distribution assumption, the relation-
ship between the volume of ejecta eruption, V, and the
square root of isopach area, x, is as follows:

V ¼
Z ∞

0
T xð ÞdA ¼ 2

Z ∞

0
xT xð Þdx

Various models have been proposed for thickness as a
function of isopach area, T(x). The most widely used to
date are the multi-segment exponential model (Pyle, 1989;
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1990; 1995), the power-law model (Bonadonna et al. 1998;
Bonadonna and Houghton, 2005) and more recently a Wei-
bull distribution has been proposed as an alternative model
(Bonadonna & Costa, 2012; 2013). Each model has its own
advantages and drawbacks and their suitability may depend
on the characteristics of the deposit. Despite the multiple
models, there is, as yet, no routine way to facilitate compar-
isons between the different approaches. For this reason, we
have developed AshCalc, which is designed to do just this.
An alternative approach to volume estimation has re-

cently been proposed by Burden et al. (2013), which uses a
purely statistical method to determine the volume of fall de-
posits without relying on the construction of isopach maps.
This is certainly a viable and complementary approach, but
it is not one that we shall explore further. As Burden et al.
(2013) showed, the results of their approach are consistent
with those derived from isopach-based models.

Introduction to ash volume estimate methodologies
Exponential model
The exponential model (Pyle, 1989) states that the rela-
tionship between that thickness, T, is a function of root
isopach area, x, as follows:

T xð Þ ¼ ce−mx
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where c represents the theoretical maximum thickness
at the vent and m characterises the rate of decrease in
tephra thickness. Taking the logarithm of both sides lin-
earises the equation and the parameters, c and m, are
found by applying least squares regression.
By fitting multiple exponential segments to the data,

the exponential law is capable of modelling deposits
which have a variable rate of thinning with distance
away from the vent–a feature which is common to many
well constrained deposits (e.g. Pyle, 1989; 1990; Fierstein
and Nathanson, 1992; Bonadonna and Houghton 2005;
Watt et al. 2009). This approach lends itself to a variety
of simple approximations, for example to determine the
minimum volume of a deposit from sparse information
(e.g. Pyle, 1995; 1999; Legros, 2000; Sulpizio, 2005).

Power law model
The power law model (Bonadonna et al. 1998; Bonadonna
& Houghton, 2005) states that the relationship between
thickness, T, is a function of root isopach area, x, as follows:

T xð Þ ¼ cx−m

Where c is a linear scaling factor and m characterises
the rate of decrease in tephra thickness. Taking the log
of both sides linearises the equation and the parameters,
c and m, are found by applying least squares regression.
The main disadvantage of the power law model is that

T(x) is not integrable between 0 and ∞ and therefore
proximal and distal limits of integration have to be
chosen (e.g., Bonadonna and Costa 2012).

Weibull model
The Weibull model was proposed more recently than
the exponential and power law models with the aim of
combining the advantage of the exponential model (be-
ing integrable between 0 and ∞) and the power law
model (variable rate of decrease) (Bonadonna & Costa,
2012). In the model thickness is related to x as follows:

T xð Þ ¼ θ
x
λ

� �k−2
e

x
λð Þk

The additional parameter, λ, allows the Weibull model
to capture the variation in thinning rate that necessitates
multiple segments in the exponential model.

Methods
The aim of AshCalc is to be an easy to use tool distributed
under an open source license for volcanologists to compare
the suitability of the three models for their data. AshCalc
consists of a graphical user interface (Figure 1), as well as
the python source code for the calculations which is easily
extensible and able to be integrated into other projects.
AshCalc’s source code is provided in Additional file 1
(Additional file 2 is the Ashcalc User Manual and source
code bundled together in case more efficient for
distribution).

General inputs and outputs
As input, AshCalc takes a list of thickness(m), area(km2)
pairs for each isopach as well as additional model specific
parameters (see Sections 2.2-2.4 below). For all models,

AshCalc displays a plot of thickness against
ffiffiffiffiffiffiffiffiffiffi
Area

p
, the

total estimated tephra deposit, the estimates for the model
parameters, the mean relative squared error in the fit of
the model to the data and the equation for T(x). In addition
to generating optimal parameters it allows the user to ex-
periment with their own values for the parameters, updat-
ing the graphs and volume and error estimates accordingly.
The user manual, containing installation instructions, is
provided as Additional file 3. Specific details relating to
running AshCalc for each model are highlighted below.

Exponential model
AshCalc uses the scientific python library, SciPy, to perform
multiple-segment least squares regression to determine the
segment parameters. When more than a single segment is
used, AshCalc chooses the segment boundaries as to ensure
the continuity of the thickness function where possible.
Model specific inputs: The number of exponential

segments
Model specific outputs: A graph of the least squares

regression fit, as well as individual segment volumes,
equations and estimates.

Power law model
AshCalc performs simple least squares regression to de-
termine the power law parameters.
Model specific inputs: Proximal and distal limits of

integration
Model specific outputs: Graph of the least squares re-

gression fit, graph of the error surface for parameters c
and m, an estimate of the proximal bound as described
in Bonadonna and Houghton (2005).

Weibull model
The Weibull model is a three parameter model and hence,
unlike the exponential and power law distributions, opti-
mal values for λ, k and θ cannot be determined analytic-
ally. Instead an optimisation algorithm must explore the
parameter space and come up with a suitable estimation
of their true values. Optimisation algorithms work by try-
ing to minimise a function of the parameters. The func-
tion should be chosen such that the minimal parameters
result in the distribution with the best fit to the data.
Decreasing the number of parameters in an optimisa-

tion problem greatly reduces the size of the parameter
space needing to be searched. This significantly increases
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Figure 1 An example screenshot of the AshCalc user interface.
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the performance of the optimisation algorithm when
finding solutions. The magnitude of the derivatives of
the function (gradient) around the minima also affects
the performance of algorithm in finding minima.
Bonadonna and Costa (2013) chose the relative

squared error (RSE) as a function of λ, k and θ as the
function to minimise.

RSE λ; k; θð Þ ¼
X
x∈data

Tobserved xð Þ−T xð Þ
Tobserved xð Þ

� �2
 !

ð1Þ

where

T xð Þ ¼ θ
x
λ

� �k−2
e−

x
λð Þk

The RSE is greater than or equal to zero for all param-
eter values, with zero representing a fit that goes through
every data point perfectly.
Two possible improvements to using RSE(λ,k,θ) as the

minimising function, with the aim of increasing the per-
formance of the optimisation algorithms, are proposed here:

1) Eliminating theta by deriving an optimal value for it
in terms of λ and k and the given isopach data. This
turns the three parameter function RSE(λ,k,θ) into
the two parameter function RSE(λ,k), resulting in
increased performance of the optimisation
algorithm.
2) Minimising a new quantity Error λ; kð Þ ¼ RSE λ; kð Þþ
ln RSE λ; kð Þð Þ as alternative to RSE(λ,k). The new
function has much larger gradients around the
minimum of RSE(λ,k), improving the performance of
the optimisation algorithms.

In this instance the performance of an algorithm is
measured by how many computation steps it has to per-
form to get to within some pre-defined range around
the optimal parameters. As it is measured in computa-
tion steps rather than computation time this measure is
independent of the hardware the algorithm is run on.

Eliminating theta
Eq 1 is a quadratic in θ and hence has a single analytic-
ally derivable minimum with respect to θ.
Differentiating Eq 1 with respect to θ yields an equa-

tion linear in θ. Setting the derivative to zero and solving
for θ arrives at an expression for the value that mini-
mises Eq 1 for any given data set and values of λ and k:

θ λ; kð Þ ¼ λk−2
X
x∈data

xk−2

Tobserved xð Þ e
− x

λð Þk

�
X
x∈data

xk−2

Tobserved xð Þ e
− x

λð Þk
� �2

 !−1

ð2Þ
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Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Weibull model error surfaces produced by AshCalc for the 1992 Cerro Negro eruption. Graphs show different error functions
(Relative Squared Error (RSE), lnRSE and RSEþ lnRSEÞ plotted against λ and k over large and small ranges of the values. The minimum is in the
region of 4:0 ≤ λ ≤ 4:4; 0:75 ≤ k ≤ 0:85. a) RSE error function–close to the minimum. b) RSE error function–larger view of parameter space. c) ln
(RSE) error function–close to the minimum. d) ln(RSE) error function–larger view of parameter space. e) ln(RSE) + RSE error function–close to the
minimum. f) ln(RSE) + RSE error function–larger view of parameter space.
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The full derivation of Eq 2 can be found in Additional
file 4.
The elimination of θ as a free parameter from the

model reduces it to a two parameter model. As well as
increasing the performance of the optimisation algo-
rithm this also allows the parameter space to be plotted
in three dimensions. This allows a visual inspection of
the parameter space by users, aiding in the process of
finding appropriate bounds to be set for the parameters
in the optimisation algorithm.

Emphasising the minima
The function RSE has the drawback that the denominator
of each term, the observed thickness Tobserved xð Þ, maps the
squared errors smaller than the observed thickness into
the range [0,1]. This mapping results in large flat basins
around the minimum of the RSE function, decreasing the
performance of optimisation algorithms.
When the 2-dimensional error function is plotted as a

function of λ and k, empirical observations confirm that
resulting surfaces tend to be flat around the minima
(Figure 2a). In such flat basins many optimisation algo-
rithms’ convergence to the minima is slow.
Taking the natural logarithm of the RSE maps values

in [0,1] to [‐∞, 1], eliminates these flat basins (Figure 2c).
Figure 3 Isopach maps for a) Rungwe pumice eruption (figure adapte
adapted from Watt et al. 2009; Alfano et al. 2011).
The logarithm function is a monotonically increasing
function and therefore:

RSE λ1; k1ð Þ ≤ RSE λ2; k2ð Þ ↔ ln RSE λ1; k2ð Þð Þ ≤ ln RSE λ1; k2ð Þð Þ

This means that if λ1; k1ð Þ is a minimum for ln
RSE λ1; k2ð Þð Þ then it is also a minimum for RSE λ1; k1ð Þ.
Hence minimising ln RSE λ1; k2ð Þð Þ is equivalent to mini-
mising RSE λ1; k1ð Þ.
An undesirable property of ln RSE λ1; k2ð Þð Þ is that it

flattens the error surface in the range [1,∞] (Figure 2d).
Ideally, for RSE λ1; k1ð Þ≥1 the properties of RSE λ1; k1ð Þ
are desirable, whilst for RSE λ1; k1ð Þ≤1 the properties of
ln RSE λ1; k2ð Þð Þ are desired.
Therefore it is proposed that a new error function is

used for optimisation of parameters λ and k:

Error λ; kð Þ ¼ RSE λ; kð Þ þ ln RSE λ; kð Þð Þ ð3Þ
This function preserves the ordering of all points on

the original error surface as the logarithm is a mono-
tonic function. Therefore minimising Eq 3 is equivalent
to minimising Eq 1.
When RSE is in the range [0,1], the logarithmic term

dominates Eq 3 mapping it to the range [‐∞, 1] (Figure 2e)
and when the RSE is in the range [1,∞] the non-
d from Fontijn et al. 2011) and b) 2008 Chaitén eruption (figure
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Table 1 A comparison between values produced by AshCalc and previously published values for three eruptions of
varying magnitude

Eruption Source Exponential
(single segment)
eruption volume (km3)

Exponential
(two segments)
eruption volume (km3)

Power law
eruption
volume (km3)

Weibull eruption
volumea (km3)

Chaitén 2008–Whole deposit
(isopachs closed)

Watt et al. 2009 - 0.17 - -

AshCalc - 0.1713 0.2158b 0.2033

Chaitén 2008–Whole deposit
(mapped area)

Watt et al. 2009 - 0.15 - -

AshCalc - 0.1518 0.1548b 0.1566

Chaitén 2008–3rd of May lobe Watt et al. 2009 - 0.05 - -

AshCalc - 0.0478 0.0506b 0.0535

Chaitén 2008–6th of May lobe Watt et al. 2009 - 0.03 0.04b -

AshCalc - 0.0347 0.0420b 0.0361

Rungwe pumice eruption–Malawi (1 cm) Fontijn et al. 2011 2.2g 3.2 3.3c -

AshCalc 2.145 3.236 3.251c -

Rungwe pumice eruption–Malawi (3 cm) Fontijn et al. 2011 - - 5.8d -

AshCalc - 4.301 5.818d -

Rungwe pumice eruption–Malawi (5 cm) Fontijn et al. 2011 - 5.6 8.5e -

AshCalc - 5.559 8.493e -

Minoan eruption Pyle, 1990 - 38.5 - -

AshCalc - 38.83 39.01f 42.34
aDue to the stochastic nature of the fit the values are taken from the medial volume of five successive calculations by AshCalc.
bProximal limit of integration–5.0 km, distal limit of integration–250 km.
cProximal limit of integration–8.6 km, distal limit of integration–1000 km.
dProximal limit of integration–7.0 km, distal limit of integration–1000 km.
eProximal limit of integration–6.1 km, distal limit of integration–1000 km.
fProximal limit of integration–1.0 km, distal limit of integration–600 km.
gMistake in published value, acknowledged by K. Fontijn in personal communication. Value should be 2.1 km3.

Table 2 A comparison between values produced by
AshCalc and previously published values for the 1992
Cerro Negro eruption (Bonadonna & Costa, 2012)

Resulting Weibull fit Bonadonna & Costa., 2008 AshCalca

Volume (km3) 0.045 0.04556

Λ 4.2 4.131

k 0.78 0.7667

Θ 1.0004 1.02325

Relative mean squared error 0.000541037 0.00050026
aDue to the stochastic nature of the fit the values are taken from the medial
volume of five successive calculations by AshCalc.
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logarithmic term dominates, preserving the greater magni-
tude of the derivatives (Figure 2f). This transformation re-
duces the size and flatness of any basins, hence increasing
the probability that the optimisation algorithm will find bet-
ter values for λ and k for a given number of iterations.

AshCalc and the Weibull model
AshCalc takes advantage of the two improvements above
and uses a variant of random-restart stochastic hill-
climbing for its optimisation algorithm. Within each
run, the maximum amount each parameter can change
decreases after each iteration.
Model specific inputs: Number of hill-climbing runs,

number of iterations per hill-climbing run and upper
and lower bounds for λ and k. Guidelines on what to
choose for these inputs can be found in the user manual
in Additional file 2.
Model specific outputs: Graph of the error surface for

parameters λ and k.

Results
In order to assess the accuracy of AshCalc, the pro-
gram’s outputs were compared to published values for
four eruptions. The four were chosen with the aim of
being spread over a range of eruptive magnitudes and
deposit shapes and, in order of eruptive magnitude, they
are the 1992 Cerro Negro eruption (Bonadonna & Costa,
2012), the 2008 Chaitén eruption (Watt et al. 2009), the
Rungwe pumice eruption (Fontijn et al. 2011) and the
Minoan eruption (Pyle, 1990).
The Rungwe pumice eruption was chosen as an ex-

ample of an elliptical deposit while the 2008 Chaitén
eruption is an example of an irregularly shaped deposit
heavily affected by wind direction. The isopach maps for
the two eruptions are shown in Figure 3 with the uncer-
tain Lake Malawi data point for the Rungwe eruption
visible in the bottom right hand corner of Figure 3a.

http://www.appliedvolc.com/content/3/1/7
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The results for the comparisons with the 2008 Chaitén
eruption, the Rungwe pumice eruption and the Minoan
eruption are presented in Table 1.
AshCalc provides values equal, within the number of

significant figures provided, to all values calculated using
the exponential model by Watt et al. (2009) for Chaitén.
Additionally AshCalc’s Weibull and power law fits pro-
vide reasonable volumes compared to the exponential
estimates by Watt et al. (2009).
For the Rungwe pumice eruption, AshCalc again pro-

vides volumes equal to the published values of all fits,
within the number of published significant figures. The
true value of the single segment exponential fit to 2 s.f.
has been acknowledged by K. Fontijn to be 2.1 km3 ra-
ther than the 2.2 km3 published (pers. comm.).
For the Minoan eruption, AshCalc calculates a two seg-

ment exponential volume within 1% of the original value.
Table 2 shows the comparison between AshCalc’s

Weibull model and the published Weibull model
(Bonadonna & Costa, 2012) for the 1992 Cerro Negro
eruption. As the process of determining the Weibull param-
eters is inherently random it is unlikely to generate an exact
match for the published model. None-the-less all three pa-
rameters are within 3% of those previously published and
the relative MSE (mean squared error, the measure used by
Bonadonna & Costa, 2012) of the fit provided by AshCalc is
smaller than that of the fit of the published model. This
means that, as measured by the relative MSE, in some sense
AshCalc has provided a “better” fit for the data.
In this paper, we have focussed on the analysis of deposit

thickness as a tool for determining erupted volume as de-
posit thicknesses are most readily and commonly mea-
sured in the field. An exactly similar approach applies for
the analysis of deposit mass per unit area as a way of de-
termining total erupted mass, and the programme can
readily be adapted for this purpose by multiplying the final
calculated volume by the estimated mean density.

Conclusions
AshCalc has the potential to be a powerful tool for vol-
canologists to calculate and compare the various models
(exponential, power law and Weibull) for tephra deposits
as matches for their data and calculation of volumes. It
has been shown that AshCalc provides volume estimates
in line with other previously published estimates and
hence can be used with a high degree of confidence. We
implement two improvements in terms of computational
performance for the estimation of the parameters for the
Weibull model in AshCalc. The first is an analytic
method for reducing the number of free parameters and
the second exaggerates the minima in parameter space,
leading to a more robust solution. As both a stand-alone
program and a series of python modules that can be in-
tegrated into other python projects, it is hoped that
AshCalc will become an important tool in the volcan-
ology community.

Additional files

: AshCalc source code.

: AshCalc user manual and source code bundled
together for efficient distribution.

: AshCalc: User manual.

: Calculation for the elimination of θ.
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